Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+2^2+2^3+2^4+2^5+...+2^10
2A=2^2+2^3+2^4+2^5+...+2^10+2^11
A=2^11-2
Xong
\(A=2^0+2^1+2^2\)\(+2^3+...+\)\(2^{50}\)
\(2A=2+2^2+2^3+...+2^{51}\)
\(2A-A=A=2^{51}-2^0\)
\(B=5+5^2+5^3+...+5^{99}+5^{100}\)
\(5B=5^2+5^3+5^4+...+5^{100}+5^{101}\)
\(5B-B=4B=5^{101}-5\)
\(B=\frac{5^{101}-5}{4}\)
\(C=3-3^2+3^3-3^4+...+\)\(3^{2007}-3^{2008}+3^{2009}-3^{2010}\)
\(3C=3^2-3^3+3^4-3^5+...-3^{2008}+3^{2009}-3^{2010}+3^{2011}\)
\(3C+C=4C=3^{2011}+3\)
\(C=\frac{3^{2011}+3}{4}\)
\(S_{100}=5+5\times9+5\times9^2+5\times9^3+...+5\times9^{99}\)
\(S_{100}=5\times\left(1+9+9^2+9^3+...+9^{99}\right)\)
\(9S_{100}=5\times\left(9+9^2+9^3+...+9^{99}+9^{100}\right)\)
\(9S_{100}-S_{100}=8S_{100}=5\times\left(9^{100}-1\right)\)
\(S_{100}=\frac{5\times\left(9^{100}-1\right)}{8}\)
A=20+21+22+23+...++23+...+250250
2�=2+22+23+...+2512A=2+22+23+...+251
2�−�=�=251−202A−A=A=251−20
�=5+52+53+...+599+5100B=5+52+53+...+599+5100
5�=52+53+54+...+5100+51015B=52+53+54+...+5100+5101
5�−�=4�=5101−55B−B=4B=5101−5
�=5101−54B=45101−5
�=3−32+33−34+...+C=3−32+33−34+...+32007−32008+32009−3201032007−32008+32009−32010
3�=32−33+34−35+...−32008+32009−32010+320113C=32−33+34−35+...−32008+32009−32010+32011
3�+�=4�=32011+33C+C=4C=32011+3
�=32011+34C=432011+3
�100=5+5×9+5×92+5×93+...+5×999S100=5+5×9+5×92+5×93+...+5×999
�100=5×(1+9+92+93+...+999)S100=5×(1+9+92+93+...+999)
9�100=5×(9+92+93+...+999+9100)9S100=5×(9+92+93+...+999+9100)
9�100−�100=8�100=5×(9100−1)9S100−S100=8S100=5×(9100−1)
�100=5×(9100−1)8S100=85×(9100−1)
\(\frac{2^4.3^2}{6^3}=\frac{2^4.3^2}{\left(2.3\right)^3}=\frac{2^4.3^2}{2^3.3^3}=\frac{2}{3}\)
a/ta gọi biểu thức trên là A.
ta có: A=1+2+22+...+2100
2A= 2x(1+2+22+...+2100)
2A= 2x1+2x2+22x2+...+2100x2
2A= 2+22+23+....+2101
2A-A=A=(2+22+23+....+2101)-(1+2+22+...+2100)
A= 2101-1
b/ làm tương tụ như câu a nhưng cuối cùng phải thêm '':2'' (vì lúc đó ta tính ra 3A - A =2A nên phải chia 2)
\(\frac{5^2.6^{11}.16^2+6^2.12^6.15^2}{2.6^{12}.10^4-81^2.960^3}\)
\(=\frac{2^{19}.5^2.3^{11}+2^{14}.3^{10}.5^2}{2^{17}.3^{12}.5^4-2^{18}.3^{11}.5^3}\)
\(=\frac{2^{14}.3^{10}.5^2\left(2^5.3+1\right)}{2^{17}.3^{11}.5^3\left(3.5-2\right)}=\frac{97}{2^3.3.5.13}=\frac{97}{1560}\)
Phân số trên = 2^10.3^9.(3-1)/2^9.3^10
= 2^10.3^9.2/2^9.3^10
= 2^11.3^9/2^9.3^10
= 2^2/3 = 4/3
Tk mk nha
\(\frac{2^{10}\cdot3^{10}-2^{10}\cdot3^9}{2^9\cdot3^{10}}\)
\(=\frac{2^{10}\left(3^{10}-3^9\right)}{2^9\cdot3^{10}}=\frac{2^{10}\cdot3^9\left(3-1\right)}{2^9\cdot3^{10}}=\frac{2^{11}\cdot3^9}{2^9\cdot3^{10}}=\frac{2^2}{3}=\frac{4}{3}\)
A=1+2+22+23+...+263
2A=2+22+23+...+263+264
\(-\)
\(A=1+2+2^2+....+2^{63}\)
\(A=2^{64}-1\)
Vậy A=264-1
\(\frac{2^5.7+2^5}{2^5.5^2-2^5.3}=\frac{2^5.\left(7+1\right)}{2^5.\left(5^2-3\right)}=\frac{8}{25-3}=\frac{8}{22}=\frac{4}{11}\)
\(\frac{3^4.5-3^6}{3^4.13+3^4}=\frac{3^4.\left(5-3^2\right)}{3^4.\left(13+1\right)}=\frac{5-9}{14}=\frac{-4}{14}=\frac{-2}{7}\)
\(\frac{-2}{7}=\frac{-22}{77}\)
\(\frac{4}{11}=\frac{28}{77}\)
\(S=2+2^2+2^3+...+2^{10}\)
\(2S=2\cdot\left(2+2^2+2^3+...+2^{10}\right)\)
\(2S=2^2+2^3+...+2^{11}\)
\(2S-S=2^2+2^3+...+2^{11}-2-2^2-...-2^{10}\)
\(S=2^{11}-2\)
Chỉnh đề:
\(S=2+2^2+2^3+2^4+...+2^{10}\)
\(2S=2.\left(2+2^2+2^3+2^4+...+2^{10}\right)\)
\(2S=2^2+2^3+2^4+2^5+...+2^{11}\)
\(2S-S=\left(2^2+2^3+2^4+2^5+...+2^{11}\right)-\left(2+2^2+2^3+2^4+...+2^{10}\right)\)
\(S=2^{11}-2\)
\(#\)\(Wendy\) \(Dang\)