K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 9 2016

Ta có B2 = 5 + \(\sqrt{13+\sqrt{5+...}}\)

<=> (B2 - 5)2 = 13 + \(\sqrt{5+\sqrt{13+\sqrt{5+...}}}\)= 13 + B

<=> B4 - 10B2 - B + 12 = 0

<=> (B4 - 9B2) + (-B2 + 3B) + ( - 4B + 12) = 0

<=> (B - 3)(B3 + 3B2 - B - 4) = 0

<=> B = 3

14 tháng 5 2019

B = 3

Cách làm giống bạn alibaba nguyễn luôn nhé

á đù em chưa học anh ơi !

25 tháng 7 2020

\(x=\sqrt{5+\sqrt{13+\sqrt{5}+\sqrt{13+..............}}}\)

\(\Rightarrow x^2=5+\sqrt{13+\sqrt{5+\sqrt{13+.......}}}\)

\(\Rightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13+..........}}}\)

\(\Rightarrow x^2-5=\sqrt{13+x}\)

\(\Rightarrow x^4-10x^2+25-13-x=0\)

\(\Rightarrow x^4-10x^2-x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)

Hình như trong ngoặc có 2 nghiệm dạng lượng giác :v xài lượng giác hóa thử bạn nhé :) ko thì Cardano :))))))

22 tháng 9 2016

Nhận xét x > 0

Ta có : \(x^2=5+\sqrt{5+\sqrt{13+\sqrt{5+\sqrt{13+...}}}}\)

\(\Leftrightarrow x^2-5=\sqrt{13+\sqrt{5+\sqrt{13+....}}}\)

\(\Leftrightarrow\left(x^2-5\right)^2=13+\sqrt{5+\sqrt{13+...}}\)

\(\Leftrightarrow\left(x^2-5\right)^2-13=x\)

\(\Leftrightarrow x^4-10x^2-x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x^3+3x^2-x-4\right)=0\)

Vì pt \(x^3+3x^2-x-4=0\) luôn có nghiệm \(x< 2\) mà \(x>\sqrt{5}>\sqrt{4}=2\)

Vậy x = 3

30 tháng 7 2018

\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)

Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)ta có:

\(B^3=5+2\sqrt{13}+5-2\sqrt{13}+3B\sqrt[3]{25-52}\)

\(=10-9B\)

Giải PT: \(B^3+9B-10=0\Leftrightarrow B^3-1+9B-9=0\)\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+1\right)+9\left(B-1\right)=0\)

\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+10\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}B-1=0\\B^2+2B+1+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+1\right)^2=-9\left(L\right)\end{cases}}}\)

Vậy \(B=1\)

31 tháng 7 2018

À chết mình làm nhầm, phải là \(\left(B-1\right)\left(B^2+B+1\right)\) nha, \(\left(B-1\right)\left(B^2+B+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}B=1\\B^2+2.\frac{1}{2}B+\frac{1}{4}-\frac{1}{4}+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2+\frac{7}{4}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2=-\frac{7}{4}\left(L\right)\end{cases}}\)

3 tháng 9 2017

 \(=\sqrt{5.\left(\sqrt{3}+1\right)}.\sqrt{48-10\sqrt{\left(2+\sqrt{3}\right)^2}}\)

\(=\sqrt{5}.\left(\sqrt{3}+1\right).\sqrt{48-10.\left(2+\sqrt{3}\right)}\)

\(=\left(\sqrt{15}+\sqrt{5}\right).\sqrt{28-10\sqrt{3}}\)

\(=\left(\sqrt{15}+\sqrt{5}\right).\sqrt{\left(5-\sqrt{3}\right)^2}\)

\(=\left(\sqrt{15}+\sqrt{5}\right).\left(5-\sqrt{3}\right)\)

Vậy...

~ Chắc chắn đúng cậu nhé ~ Tiếc gì 1 tk cho tớ nào?

10 tháng 9 2019

Câu hỏi của Nguyễn Tấn Phát - Toán lớp 9 - Học toán với OnlineMath

10 tháng 9 2019

\(\sqrt{2}A=\sqrt{2}\sqrt{13+\sqrt{2}+5\sqrt{1+2\sqrt{2}}}+\sqrt{2}\sqrt{13+\sqrt{2}-5\sqrt{1+2\sqrt{2}}}\)

\(=\sqrt{26+2\sqrt{2}+5.2\sqrt{1+2\sqrt{2}}}+\sqrt{26+2\sqrt{2}-5.2\sqrt{1+2\sqrt{2}}}\)

\(=\sqrt{5^2+2.5.\sqrt{1+2\sqrt{2}}+\left(1+2\sqrt{2}\right)}+\sqrt{5^2-2.5.\sqrt{1+2\sqrt{2}}+\left(1+2\sqrt{2}\right)}\)

\(=\sqrt{\left(\sqrt{1+2\sqrt{2}}+5\right)^2}+\sqrt{\left(\sqrt{1+2\sqrt{2}}-5\right)^2}\)

\(=\left|\sqrt{1+2\sqrt{2}}+5\right|+\left|\sqrt{1+2\sqrt{2}}-5\right|\)

\(=\sqrt{1+2\sqrt{2}}+5+5-\sqrt{1+2\sqrt{2}}=10\)

=> \(A=\frac{10}{\sqrt{2}}=5\sqrt{2}\)

23 tháng 7 2017

a, \(=\sqrt{10+2\sqrt{17-4\sqrt{\left(\sqrt{5}+2\right)^2}}}\)

\(=\sqrt{10+2\sqrt{17-4\left(\sqrt{5}+2\right)}}\)

\(=\sqrt{10+2\sqrt{17-4\sqrt{5-8}}}\)

\(=\sqrt{10+2\sqrt{9-4\sqrt{5}}}\)

\(=\sqrt{10+2\sqrt{\left(\sqrt{5}-2\right)^2}}\)

\(=\sqrt{10+2\left(\sqrt{5}-2\right)}\)

\(=\sqrt{10+2\sqrt{5}-4}\)

\(=\sqrt{6+2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}=\sqrt{5}+1\)

23 tháng 7 2017

b, \(=\sqrt{6+2\sqrt{5-\sqrt{\left(2\sqrt{3}+1\right)^2}}}\)

\(=\sqrt{6+2\sqrt{5-\left(2\sqrt{3}+1\right)}}\)

\(=\sqrt{6+2\sqrt{4-2\sqrt{3}}}\)

\(=\sqrt{6+2\sqrt{\left(\sqrt{3}-1\right)^2}}\)

\(=\sqrt{6+2\left(\sqrt{3}-1\right)}\)

\(=\sqrt{6+2\sqrt{3}-2}\)

\(=\sqrt{4+2\sqrt{3}}=\sqrt{\left(\sqrt{3}+1\right)^2}=\sqrt{3}+1\)