Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a,\left(6x+1\right)\left(x+2\right)-2x\left(3x-5\right)\)
\(=6x^2+12x+x+2-6x^2+10x\)
\(=23x+2\)
a) (6x + 1)(x + 2) - 2x(3x - 5)
= 6x2 + 12x + x + 2 - 6x2 + 10x
= (6x2 - 6x2) + (12x + x + 10x) + 2
= 23x + 2
b) (2x - 1)2 - (2x - 3)(2x + 3)
= 4x2 - 4x + 1 - 4x2 + 9
= (4x2 - 4x2) - 4x + (1 + 9)
= -4x + 10
c) (2x - 3)3 - (3x + 1)(5 - 4x) - 16x2
= 8x3 - 36x2 + 54x - 15x + 12x2 - 5 + 4x - 16x2
= 8x3 - (36x2 - 12x2 + 16x2) + (54x - 15x + 4x) - 5
= 8x3 - 40x2 + 43x - 5
d) (3x + 2) - (x - 5) - x(3x - 13)
= 3x + 2 - x + 5 - 3x2 + 13x
= (3x - x + 13x) + (2 + 5) - 3x2
= 15x + 7 - 3x2
Bài 1:
a: \(A=3\left(x^2-2x+1\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2+12x+9\right)-5+20x\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-\left(4x^2+12x+9\right)-5+20x\)
\(=4x^2-8x-16-5+20x-4x^2-12x-9\)
\(=-30\)
b: \(B=5x\left(x^2-49\right)-x\left(4x^2-4x+1\right)-\left(x^3+4x^2-246x\right)-175\)
\(=5x^3-245x-4x^3+4x^2-x-x^3-4x^2+246x-175\)
\(=-175\)
d: \(D=25x^2-20x+4-36x^2-12x-1+11\left(x^2-4\right)-48+32x\)
\(=-11x^2-32x+3-48+32x+11x^2-44\)
=-89
Câu 1: Chứng minh giá trị của biểu thức không phụ thuộc vào biến x
A = x (5x - 3) - x2 ( x - 1) + x (x2 - 6x) + 3x - 10
A= 5x2-3x -x3 +x2 +x3-6x2+3x-10
A= -10
Vậy giá trị của biểu thức A ko phụ thuộc vào biến x
B = ( 2x + 1) x - x2 (x + 2) + x3 - x + 3
B= 2x2+x-x3-2x2+x3-x+3
B= 3
Vậy giá trị của biểu thức B ko phụ thuộc vào biến x
C = 5x ( x2 - 7x + 2) - x2 (5x - 8) + 27x2 - 10x + 2
C= 5x3-35x2+10x-5x3+8x2+27x2-10x+2
C= 2
Vậy giá trị của biểu thức C ko phụ thuộc vào biến x
Câu 2: Tìm x:
1. 4x (3x + 2) - 6x (2x + 5) + 21 (x - 1) = 0
=> 12x2 + 8x -12x2 -30x +21x -21=0
=> -x -21 = 0
=> x = -21
Vậy x = -21
2. 5x (12x + 7) - 3x (20x - 5) = -100
=> 60x2 + 35x - 60x2 + 15x +100=0
=> 50x + 100 =0
=> x = -2
Vậy x = -2
4. 10 (3x - 2) - 3 (5x + 2) + 5 (11 - 4x) = 25
=> 30x-20-15x-6+55-20x-25=0
=> -5x +4 =0
=> x = 4/5
Vậy x = 4/5
Câu 1
a) \(A=x\left(5x-3\right)-x^2\left(x-1\right)+x\left(x^2-6x\right)+3x-10\)
\(A=5x^2-3x-x^3+x^2+x^3-6x^2+3x-10\)
\(A=-10\)
Vậy biểu thức A không phụ thuộc vào biến x
b) \(B=\left(2x+1\right)x-x^2\left(x+2\right)+x^3-x+3\)
\(B=2x^2+x-x^3-2x^2+x^3-x+3\)
\(B=3\)
Vậy biểu thức B không phụ thuộc vào biến x
c) \(C=5x\left(x^2-7x+2\right)-x^2\left(5x-8\right)+27x^2-10x+2\)
\(C=5x^3-35x^2+10x-5x^3+8x^2+27x^2-10x+2\)
C = 2
Vậy biểu thức C không phụ thuộc vào biến x
a) \(\left(4x-1\right)^2-\left(3x+2\right)\left(3x-2\right)=\left(7x-1\right)\left(x+2\right)+\left(2x+1\right)^2-\left(4x^2+7\right)\)(1)
\(\Leftrightarrow\left(16x^2-8x+1\right)-\left(9x^2-4\right)=\left(7x^2+14x-x-2\right)+\left(4x^2+4x+1\right)-\left(4x^2+7\right)\)
\(\Leftrightarrow16x^2-8x+1-9x^2+4=7x^2+13x-2+4x^2+4x+1-4x^2-7\)
\(\Leftrightarrow7x^2-8x+5=7x^2+17x-8\)
\(\Leftrightarrow7x^2-8x-7x^2-17x=-8-5\)
\(\Leftrightarrow-25x=-13\)
\(\Leftrightarrow x=\dfrac{13}{25}\)
Vậy tập nghiệm phương trình (1) là \(S=\left\{\dfrac{13}{25}\right\}\)
a) Ta có: \(-3x^2\left(2x^2-\frac{1}{3}x+2\right)\)
\(=-6x^4+x^3-6x^2\)
b) Ta có: \(2xy^2\left(x-3y+xy\right)\)
\(=2x^2y^2-6xy^3+2x^2y^3\)
c) Ta có: \(\left(5x^2-4x\right)\left(x-2\right)\)
\(=5x^3-10x^2-4x^2+8x\)
\(=5x^3-14x^2+8x\)
d) Ta có: \(-\left(2-x\right)\left(2x+3\right)\)
\(=\left(x-2\right)\left(2x+3\right)\)
\(=2x^2+3x-4x-6\)
\(=2x^2-x-6\)
e) Ta có: \(\left(3x^3-2x^2+x\right):\left(-2x\right)\)
\(=\frac{-3}{2}x^2+x-\frac{1}{2}\)
f) Ta có: \(\left(15x^2y^2-21x^3y+2x^2y\right):\left(3x^2y\right)\)
\(=5y-7x+\frac{2}{3}\)
g)
1.
a) \(\left\{4x-2\left(x-3\right)-3\left[x-3\left(4-2x\right)+8\right]\right\}.\left(-3x\right)\)
= \(\left[4x-2x+6-3\left(x-12+6x\right)+8\right].\left(-3x\right)\)
\(=\left(4x-2x+6-3x+36-18x+8\right).\left(-3x\right)\)
= \(\left(-19x+50\right).\left(-3x\right)\)
\(=57x^2-150x\)
b) \(5\left(3x^2+4y^3\right)+\left[9\left(2x^2-y^3\right)-2\left(x^2-5y^3\right)\right]\)
\(=15x^2+20y^3+\left(18x^2-9y^3-2x^2+10y^3\right)\)
\(=15x^2+20y^3+16x^2+y^3\)
\(=31x^2+21y^3\)
2.
a) \(5x\left(1-2x\right)-3x\left(x+18\right)=0\)
\(\Rightarrow5x-10x^2-3x^2-54x=0\)
\(\Rightarrow-49x-13x^2=0\)
\(\Rightarrow x\left(-49-13x\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{-49}{13}\end{matrix}\right.\)
b)
\(5x-3\left\{4x-2\left[4x-3\left(5x-2\right)\right]\right\}=182\)
\(\Rightarrow5x-3\left[4x-2\left(4x-15x+6\right)\right]=182\)
\(\Rightarrow5x-3\left(4x-8x+30x-12\right)=182\)
\(\Rightarrow5x-12x+24x-90x+36=182\)
\(\Rightarrow-73x-146=0\)
\(\Rightarrow x=-2\)