Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=1-3+3^2-3^3+3^4-3^5+...+3^38-3^39+3^100
3A=3-3^2+3^3-3^4+3^5-3^6+...+3^99-3^100+3^101
3A+A=3-3^2+3^3-3^4+3^5-3^6+...+3^99-3^100+3^101+1-3+3^2-3^3+3^4-3^5+...+3^98-3^99+3^100
4A=3^101+1
A=(3^101+1)/4
A = 1 + (1+ 1).2 + (1 + 2).3 + (1+3).4 + ...+ (1 + n-1). n
A = 1 + (2+1.2) + (3+ 2.3) + (4 + 3.4) + ....+ ( n + (n -1).n)
A = (1+ 2 + 3 + 4 + ...+ n) + (1.2 + 2.3 + 3.4 + .....+ (n-1).n)
Tính B = 1+ 2+ 3 + ...+ n = (n +1).n/ 2
C = 1.2+ 2.3 + 3.4 + ...+ (n-1).n
=> 3.C = 1.2.3 + 2.3.3 + 3.4.3 + ...+ (n-1).n.3
3C = 1.2.3 + 2.3. (4 -1) + 3.4.(5 - 2) + ... + (n -1).n [(n+ 1) - (n -2)]
3C = [1.2.3 + 2.3.4 + ....+ (n-1).n.(n +1)] - (1.2.3 + 2.3.4 + ... + (n-2)(n -1).n)
3C = (n -1).n (n +1) => C = (n -1).n.(n +1)/ 3
Vậy A = (n +1).n/ 2 + (n -1).n(n +1)/3
bài làm
A = 1 + (1+ 1).2 + (1 + 2).3 + (1+3).4 + ...+ (1 + n-1). n
A = 1 + (2+1.2) + (3+ 2.3) + (4 + 3.4) + ....+ ( n + (n -1).n)
A = (1+ 2 + 3 + 4 + ...+ n) + (1.2 + 2.3 + 3.4 + .....+ (n-1).n)
B = 1+ 2+ 3 + ...+ n = (n +1).n/ 2
C = 1.2+ 2.3 + 3.4 + ...+ (n-1).n
=> 3.C = 1.2.3 + 2.3.3 + 3.4.3 + ...+ (n-1).n.3
3C = 1.2.3 + 2.3. (4 -1) + 3.4.(5 - 2) + ... + (n -1).n [(n+ 1) - (n -2)]
3C = [1.2.3 + 2.3.4 + ....+ (n-1).n.(n +1)] - (1.2.3 + 2.3.4 + ... + (n-2)(n -1).n)
3C = (n -1).n (n +1)
=> C = (n -1).n.(n +1)/ 3
Vậy............
hok tốt
a) S=(1-2)^2+(3-4)^3+......+(99-100)^99
=(-1)^2+(-1)^3+......+(-1)^99
=1+(-1)+....+(-1)
=[1+(-1)]+[1+(-1)]+.......+[1+(-1)]
=0+0+.....+0=0
1^2-2^2+3^2-4^2+.......+99^2-100^2
=(1+2)(-1)+(3+4)(-1)+......+(99+100)(-1)
=(-1)(1+2+3+4+......+99+100)=(-1).101.100:2=-5050
a)Đặt \(A=3-3^2+3^3-3^4+...+3^{95}-3^{96}\)
\(3A=3^2-3^3+3^4-3^5+...+3^{96}-3^{97}\)
\(3A+A=\left(3^2-3^3+3^4-3^5+...+3^{96}-3^{97}\right)+\left(3-3^2+3^3-3^4+...+3^{95}-3^{96}\right)\)
\(4A=-3^{97}+3\)
\(A=\frac{-3^{97}+3}{4}\)
b)tương tự như câu a
c)\(\left(100-1^2\right)\left(100-2^2\right)\left(100-3^2\right).....\left(100-99^2\right)\)
\(=\left(10^2-1^2\right)\left(10^2-2^2\right)\left(10^2-3^2\right)....\left(10^2-10^2\right)...\left(10^2-99^2\right)\)
\(=\left(10^2-1^2\right)\left(10^2-2^2\right)\left(10^2-3^2\right)...0...\left(10^2-99^2\right)\)
=0