K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 12 2017

Bài này nhân chứ sao lại chia :v Có trong SBT mà :v

\(\left(\dfrac{x^2-2x}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right).\left(1-\dfrac{1}{x}-\dfrac{2}{x^2}\right)\)

\(=\left[\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{2\left(x^2+4\right)-x\left(x^2+4\right)}\right].\dfrac{x^2-x-2}{x}\)

\(=\left[\dfrac{x^2-2x}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(2-x\right)\left(x^2+3\right)}\right].\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{\left(x^2-2x\right)\left(2-x\right)-4x^2}{2\left(2-x\right)\left(x^2+4\right)}.\dfrac{x^2+x-2x-2}{x^2}\)

\(=\dfrac{-x\left(x^2+4\right)}{2\left(2-x\right)\left(x^2+4\right)}.\dfrac{\left(x+1\right)\left(x-2\right)}{x^2}\)

\(=\dfrac{x+1}{2x}\)

6 tháng 12 2017

\(\dfrac{-\left(x+1\right)}{2x}=\dfrac{-x-1}{2x}\) chứ nhỉ

30 tháng 10 2022

\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\left(\dfrac{x\left(x^2-4x+4\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x\left(x^2-4x+4+4x\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x+1}{2x}\)

16 tháng 1 2018

( x22x / 2x2+8 2x2 / 84x+2x2x3 ).(11/x 2/x2 )

=[ x22x / 2(x2+4) 2x2 / 2(x2+4)x(x2+4) ]. x2x2 / x2

=[x22x / 2(x2+4) 2x2 / (2x)(x2+3)] . x2x2 / x2

=(x22x)(2x)4x2 / 2(2x)(x2+4) . x2+x2x2 / x2

= x(x2+4) / 2(2x)(x2+4). (x+1)(x2) / x2

=x+1 / 2x

\(A=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-2x^2-2x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

b: \(=\left[\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{x+1-3x^2-3x}{3x}\right]\cdot\dfrac{x}{x+1}\)

\(=\left(\dfrac{2}{3x}-\dfrac{2}{x+1}\cdot\dfrac{-3x^2-2x+1}{3x}\right)\cdot\dfrac{x}{x+1}\)

\(=\dfrac{2x+2+6x^2+4x-2}{3x\left(x+1\right)}\cdot\dfrac{x}{x+1}\)

\(=\dfrac{6x^2+6x}{3\left(x+1\right)}\cdot\dfrac{1}{x+1}\)

\(=\dfrac{6x\left(x+1\right)}{3\left(x+1\right)^2}=\dfrac{2x}{x+1}\)

c: \(VT=\left[\dfrac{2}{\left(x+1\right)^3}\cdot\dfrac{x+1}{x}+\dfrac{1}{\left(x+1\right)^2}\cdot\dfrac{1+x^2}{x^2}\right]\cdot\dfrac{x^3}{x-1}\)

\(=\left(\dfrac{2}{x\left(x+1\right)^2}+\dfrac{x^2+1}{x^2\cdot\left(x+1\right)^2}\right)\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{2x+x^2+1}{x^2\cdot\left(x+1\right)^2}\cdot\dfrac{x^3}{x-1}\)

\(=\dfrac{\left(x+1\right)^2}{\left(x+1\right)^2}\cdot\dfrac{x}{x-1}=\dfrac{x}{x-1}\)

24 tháng 6 2017

Phân thức đại số

Phân thức đại số

1 tháng 6 2018

rảnh vãi

a: ĐKXĐ: x<>2; x<>0

b: \(M=\left(\dfrac{x^2-2x}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x-2\right)\left(x^2+4\right)}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\dfrac{\left(x^2-2x\right)\left(x-2\right)+4x^2}{2\left(x-2\right)\left(x^2+4\right)}\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-2x^2-2x^2+4x}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x}{2}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

c: M>=-3

=>(x+1+6x)/2x>=0

=>(7x+1)/x>=0

=>x>0 hoặc x<=-1/7

\(=\left(\dfrac{2x-x^2}{2\left(x^2+4\right)}-\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{2+x-x^2}{x^2}\)

\(=\dfrac{x\left(2-x\right)\left(x-2\right)-4x^2}{2\left(x^2+4\right)\left(x-2\right)}\cdot\dfrac{-\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{-x\left(x^2-4x+4\right)-4x^2}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}\)

\(=\dfrac{-x^3+4x^2-4x-4x^2}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}\)

\(=\dfrac{-x^3-4x}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}\)

\(=\dfrac{-x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{-\left(x+1\right)}{x^2}=\dfrac{x+1}{2x}\)

a: \(P=\left(\dfrac{3x+6}{2\left(x^2+4\right)}-\dfrac{2x^2-x-10}{\left(x+1\right)\left(x^2+1\right)}\right):\left(\dfrac{10\left(x^2-1\right)+3\left(x^2+1\right)\left(x-1\right)-6\left(x+1\right)\left(x^2+1\right)}{\left(x^2+1\right)\left(x+1\right)\left(x-1\right)\cdot2}\right)\cdot\dfrac{2}{x-1}\)

\(=\left(\dfrac{\left(3x+6\right)\left(x^3+x^2+x+1\right)-\left(2x^2+8\right)\left(2x^2-x-10\right)}{2\left(x^2+4\right)\left(x+1\right)\left(x^2+1\right)}\right)\cdot\dfrac{\left(x^2+1\right)\left(x-1\right)\left(x+1\right)\cdot2}{-3x^3+x^2-3x-13}\cdot\dfrac{2}{x-1}\)

\(=\dfrac{-x^4+11x^3+13x^2+17x+16}{\left(x^2+4\right)}\cdot\dfrac{2}{-3x^3+x^2-3x-13}\)

a: \(M=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{x^3-2x^2+4x-8}\right)\cdot\dfrac{x^2-x-2}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)}{2\left(x^2+4\right)}+\dfrac{2x^2}{\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\left(\dfrac{x\left(x-2\right)^2+4x^2}{2\left(x^2+4\right)\left(x-2\right)}\right)\cdot\dfrac{\left(x-2\right)\left(x+1\right)}{x^2}\)

\(=\dfrac{x^3-4x^2+4x+4x^2}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}\)

\(=\dfrac{x\left(x^2+4\right)}{2\left(x^2+4\right)}\cdot\dfrac{x+1}{x^2}=\dfrac{x+1}{2x}\)

b: Thay x=1/2 vào M, ta được:

\(M=\left(\dfrac{1}{2}+1\right):\left(2\cdot\dfrac{1}{2}\right)=\dfrac{3}{2}\)