K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 7 2017

\(\left(\dfrac{2a^3+a^2-a}{a^3-1}-2+\dfrac{1}{1-a}\right):\left(1:\dfrac{2a-1}{a-a^2}\right)\)

\(=\left(\dfrac{2a^3+a^2-a-2a^3+2-a^2-a-1}{\left(a-1\right)\left(a^2+a+1\right)}\right):\left(\dfrac{a\left(1-a\right)}{2a-1}\right)\)

\(=\dfrac{-2a+1}{\left(a-1\right)\left(a^2+a+1\right)}.\dfrac{2a-1}{a\left(1-a\right)}\)

\(=\dfrac{6a-3}{\left(a-1\right)^2\left(a^2+a+1\right)}\)

---

Thấy sai sai :vv

\(A=\left[\dfrac{\left(a-1\right)^2}{a^2+a+1}+\dfrac{2a^2-4a-1}{a^3-1}+\dfrac{1}{a-1}\right]\cdot\dfrac{a\left(a^2+1\right)}{2a}\)

\(=\dfrac{a^3-3a^2+3a-1+2a^2-4a-1+a^2+a+1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}\)

\(=\dfrac{a^3-1}{\left(a-1\right)\left(a^2+a+1\right)}\cdot\dfrac{a^2+1}{2}=\dfrac{a^2+1}{2}\)

\(C=\left(\dfrac{1}{\left(a^2+1\right)\left(a+1\right)^2}+\dfrac{2}{\left(a+1\right)^3}\cdot\dfrac{a+1}{a}\right):\dfrac{a-1}{a^3}\)

\(=\left(\dfrac{1}{\left(a^2+1\right)\left(a+1\right)^2}+\dfrac{2}{a\left(a+1\right)^2}\right):\dfrac{a-1}{a^3}\)

\(=\dfrac{a+2\cdot\left(a^2+1\right)}{a\left(a^2+1\right)\left(a+1\right)^2}\cdot\dfrac{a^3}{a-1}\)

\(=\dfrac{2a\left(a+1\right)}{\left(a^2+1\right)\cdot\left(a+1\right)^3}\cdot\dfrac{a^2}{a-1}\)

\(=\dfrac{2a^3}{\left(a^2+1\right)\left(a+1\right)^2\cdot\left(a-1\right)}\)

25 tháng 11 2018

Đặt \(\left(a-1\right)^2=t\)

Ta có: \(\left(a-1\right)^4-11\left(a-1\right)^2+30\)

\(=t^2-11t+30\)

\(=t\left(t-5\right)-6\left(t-5\right)=\left(t-5\right)\left(t-6\right)\)

\(=\left[\left(a-1\right)^2-5\right]\left[\left(a-1\right)^2-6\right]\)

\(=\left(a^2-2a-4\right)\left(a^2-2a-5\right)\)

Đặt \(a^2-2a=k\)

Ta có: \(3\left(a-1\right)^4-18\left(a^2-2a\right)-3\)

\(=3\left(a^2-2a+1\right)^2-18\left(a^2-2a\right)-3\)

\(=3\left(k+1\right)^2-18k-3\)

\(=3k^2+6k+3-18k-3\)

\(=3k^2-12k=3k\left(k-4\right)\)

\(=3\left(a^2-2a\right)\left(a^2-2a-4\right)\)(Ở đây bạn ghi thêm điều kiện nhé)

Khi đó: \(N=\frac{\left(a^2-2a-4\right)\left(a^2-2a-5\right)}{3\left(a^2-2a\right)\left(a^2-2a-4\right)}=\frac{a^2-2a-5}{3\left(a^2-2a\right)}\)

\(A=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{\left(2a-1\right)^2}{2a+1}\cdot\dfrac{1}{\left(2a-1\right)\left(2a+1\right)}\right)\cdot\left(\dfrac{4a\left(a+1\right)+1}{4a^2}\right)-\dfrac{1}{2a}\)

\(=\left(\dfrac{-\left(2a-1\right)}{2a+1}+\dfrac{2a-1}{\left(2a+1\right)^2}\right)\cdot\dfrac{4a^2+4a+1}{4a^2}-\dfrac{1}{2a}\)

\(=\dfrac{-\left(2a-1\right)\left(2a+1\right)}{\left(2a+1\right)^2}\cdot\dfrac{\left(2a+1\right)^2}{4a^2}-\dfrac{1}{2a}\)

\(=\dfrac{-\left(4a^2-1\right)}{4a^2}-\dfrac{2a}{4a^2}\)

\(=\dfrac{-4a^2-2a+1}{4a^2}\)

23 tháng 11 2017

Đặt: \(L=\dfrac{3\left(a+2\right)}{a^3+a^2+a+1}+\dfrac{2a^2-a-10}{a^3-a^2+a-1}\)

Ta có:

\(\dfrac{3\left(a+2\right)}{a^3+a^2+a+1}=\dfrac{3\left(a+2\right)}{a^2\left(a+1\right)+1\left(a+1\right)}=\dfrac{3\left(a+2\right)}{\left(a^2+1\right)\left(a+1\right)}\)

\(\dfrac{2a^2-a-10}{a^3-a^2+a-1}=\dfrac{a\left(2a-1\right)-10}{a^2\left(a-1\right)+1\left(a-1\right)}=\dfrac{a\left(2a-1\right)-10}{\left(a^2+1\right)\left(a-1\right)}\)

Như vậy \(L=\dfrac{3\left(a+2\right)}{\left(a^2+1\right)\left(a+1\right)}+\dfrac{a\left(2a-1\right)-10}{\left(a^2+1\right)\left(a-1\right)}\)

Đặt:

\(N=\dfrac{5}{a^2+1}+\dfrac{3}{2a+2}-\dfrac{3}{2a-2}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{3\left(2a-2\right)}{\left(2a+2\right)\left(2a-2\right)}-\dfrac{3\left(2a+2\right)}{\left(2a+2\right)\left(2a-2\right)}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{6a-6}{4a^2-4}-\dfrac{6a+6}{4a^2-4}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{6a-6-6a-6}{4a^2-4}=\dfrac{5}{a^2+1}+\dfrac{-12}{4a^2-4}\)

\(N=\dfrac{5}{a^2+1}+\dfrac{-12}{4\left(a^2-1\right)}=\dfrac{5}{a^2+1}+\dfrac{-3}{a^2-1}\)

\(N=\dfrac{5\left(a^2-1\right)}{\left(a^2+1\right)\left(a^2-1\right)}+\dfrac{-3\left(a^2+1\right)}{\left(a^2-1\right)\left(a^2+1\right)}\)

\(N=\dfrac{5a^2-5-3a^2-3}{a^4-1}=\dfrac{2a^2-8}{a^4-1}\)

Thay M với N vào A Mình cạn sức rồi bucminhbucminhbucminh

24 tháng 11 2017

Cảm ơn nhiều!!!!