Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\left(3x-5\right)\left(9x^2+15x+25\right)\)
\(=\left(3x\right)^3-5^3\)
\(=27x^3-125\)
b) \(\left(2x+7\right)\left(x^2-14x+49\right)-2x\left(2x-1\right)\left(2x+1\right)\)
\(=2x^3-28x^2+98x+7x^2-98x+343-2x\left(4x^2-1\right)\)
\(=2x^3-28x^2+7x^2+343-8x^3+2x\)
\(=-6x^3-21x^2+343+2x\)
c) \(\left(4x-7\right)\left(16x^2+28x+49\right)\left(3x+1\right)\left(9x^2-3x+1\right)-9x\left(3x^2-1\right)\)
\(=\left(64x^3-343\right)\left(3x+1\right)\left(9x^2-3x+1\right)-27x^3+9x\)
\(=\left(6x^3-343\right)\left(27x^3+1\right)-27x^3+9x\)
\(=1728x^6+64x^3-9261x^3-343-27x^3+9x\)
\(=1728x^6-9224x^3-343+9x\)
\(a,\)\(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2.\)
\(=\left[\left(x-y\right)+\left(x+y\right)\right]^2=\left(x-y+x+y\right)^2=x^2\)
\(b,\)\(\left(2x-3\right)\left(4x^2+6x+9\right)-\left(54+8x\right)\)
\(=8x^2-27-54-8x=8x^2-8x-81\)
\(c,\)\(\left(3x+y\right)\left(9x^2-3xy+y^2\right)-\left(3x-y\right)\left(9x^2+3xy+y^2\right)\)
\(=27x^3+y^3-\left(27x^3-y^3\right)=2y^3\)
\(d,\)\(\left(a+b+c\right)^2-\left(a-c\right)^2-2ab+2bc\)
\(=a^2+b^2+c^2+2ab+2bc+2ac-a^2+2ac-c^2-2ab+2bc\)
\(=b^2+4bc+4ac\)
Dãy số có 2 chữ số chia hết cho 3 là:[12,15,....,99]
Khoảng cách của từng số hạng là 3
Số số hạng là: (99-12):3+1=30(số)
Vậy có 30 số có 2 chữ số chia hết cho 3
\(A=\dfrac{3x^2+9x+17}{3x^2+9x+7}=1+\dfrac{10}{3x^2+9x+7}=1+\dfrac{10}{3\left(x^2+2.x.\dfrac{9}{2}+\dfrac{81}{4}\right)-\dfrac{215}{4}}\\ =1+\dfrac{10}{3\left(x+\dfrac{9}{2}\right)^2-\dfrac{215}{4}}\le\dfrac{35}{43}\)
Câu khác giải TT
\(A=x^3-3x^2+3x-1\\ A=x^3-3x^2.1+3x.1^2-1^3\\ A=\left(x-1\right)^3\)
Thay x=101 vào biểu thức trên ta được kết quả là 100^3= 1000000
\(A=\left(4x+5\right)^2-\left(3x-7\right)^2-\left(4x-1\right)\left(4x+1\right)\)
\(=\left(4x\right)^2+2.4x.5+5^2-\left[\left(3x\right)^2-2.3x.7+7^2\right]-\left[\left(4x\right)^2-1^2\right]\)
\(=16x^2+40x+25-\left(9x^2-42x+49\right)-\left(16x^2-1\right)\)
\(=16x^2+40x+25-9x^2+42x-49-16x^2+1=-9x^2+82x-23\)
A=(4x+5)2-(3x-7)2-(4x-1)(4x+1)
=16x2+40x+25-9x2+42x-49-16x2+1
=(16x2-9x2-16x2)+(40x+42x)+(25-49+1)
=-9x2+82x-23
a. \(\left(2x-1\right)\left(3x+2\right)\left(5-x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=0\\3x+2=0\\5-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{-2}{3}\\x=5\end{matrix}\right.\)
\(\Rightarrow S=\left\{\dfrac{1}{2};\dfrac{-2}{3};5\right\}\)
b. \(\left(2x+5\right)\left(x-4\right)=\left(x-5\right)\left(4-x\right)\)
\(\Leftrightarrow\left(2x+5\right)\left(x-4\right)+\left(x-5\right)\left(x-4\right)\)
\(\Leftrightarrow3x\left(x-4\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}3x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
\(\Rightarrow S=\left\{0;4\right\}\)
c. \(16x^2-8x+1=4\left(x+3\right)\left(4x-1\right)\)
\(\Leftrightarrow\left(4x-1\right)^2-4\left(x+3\right)\left(4x-1\right)=0\)
\(\Leftrightarrow\left(4x-1\right)\left(4x-1-4x-3\right)=0\)
\(\Leftrightarrow-4\left(4x-1\right)=0\Leftrightarrow4x-1=0\Leftrightarrow x=\dfrac{1}{4}\)
d. \(27x^2\left(x+3\right)-12\left(x^2+3x\right)=0\)
\(\Leftrightarrow27x^2\left(x+3\right)-12x\left(x+3\right)=0\)
\(\Leftrightarrow x\left(27x-12\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\27x-12=0\\x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=\dfrac{4}{9}\\x=-3\end{matrix}\right.\)
\(\Rightarrow S=\left\{0;\dfrac{4}{9};-3\right\}\)
e. \(2\left(9x^2+6x+1\right)=\left(3x+1\right)\left(x-2\right)\)
\(\Leftrightarrow2\left(3x+1\right)^2-\left(3x+1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(6x+1-x+2\right)=0\)
\(\Leftrightarrow\left(3x+1\right)\left(7x+3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}3x+1=0\\7x+3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{3}\\x=\dfrac{-3}{7}\end{matrix}\right.\)
\(\Rightarrow S=\left\{\dfrac{-1}{3};\dfrac{-3}{7}\right\}\)
g. \(\left(2x-1\right)^2=49\)
\(\Leftrightarrow2x-1=7\Leftrightarrow x=4\)
a: \(\left(3x+2\right)^2+4x-3x^2+2\left(5x-2\right)\left(5x+2\right)-75x^2\)
\(=9x^2+12x+4+4x-3x^2+50x^2-8-75x^2\)
\(=-19x^2+16x-4\)
Bài 1:
\(A=-x^2-2x+9\)
\(A=-\left(x^2+2x-9\right)\)
\(A=-\left(x^2+2x+1-10\right)\)
\(A=-\left(x+1\right)^2+10\)
Vì \(-\left(x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x+1\right)^2+10\le10\)
\(\Rightarrow Amax=10\Leftrightarrow x=-1\)
\(B=-9x^2+6x+25\)
\(B=-\left(9x^2-6x-25\right)\)
\(B=-\left[\left(3x\right)^2-2.3x+1-26\right]\)
\(B=-\left(3x-1\right)^2+26\)
Vì \(-\left(3x-1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(3x-1\right)^2+26\le26\)
\(\Rightarrow Bmax=26\Leftrightarrow3x-1=0\Rightarrow x=\dfrac{1}{3}\)
\(C=-x^2+x+1\)
\(C=-\left(x^2-x-1\right)\)
\(C=-\left(x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}-1\right)\)
\(C=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\)
Vì \(-\left(x-\dfrac{1}{2}\right)^2\le0\) với mọi x
\(\Rightarrow-\left(x-\dfrac{1}{2}\right)^2+\dfrac{5}{4}\le\dfrac{5}{4}\)
\(\Rightarrow Cmax=\dfrac{5}{4}\Leftrightarrow x=\dfrac{1}{2}\)
\(D=-2x^2+3x+1\)
\(D=-2\left(x^2-\dfrac{3}{2}x-\dfrac{1}{2}\right)\)
\(D=-2\left(x^2-2.x\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}-\dfrac{1}{2}\right)\)
\(D=-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\)
Vì \(-2\left(x-\dfrac{3}{4}\right)^2\le0\) với mọi x
\(\Rightarrow-2\left(x-\dfrac{3}{4}\right)^2+\dfrac{17}{8}\le\dfrac{17}{8}\)
\(\Rightarrow Dmax=\dfrac{17}{8}\Leftrightarrow x=\dfrac{3}{4}\)
\(E=-25x^2-10x+7\)
\(E=-\left(25x^2+10x-7\right)\)
\(E=-\left[\left(5x\right)^2+2.5x+1-8\right]\)
\(E=-\left(5x+1\right)^2+8\)
Vì \(-\left(5x+1\right)^2\le0\) với mọi x
\(\Rightarrow-\left(5x+1\right)^2+8\le8\)
\(\Rightarrow Emax=8\Leftrightarrow5x+1=0\Rightarrow x=-\dfrac{1}{5}\)
Bài 2:
\(A=9x^2+6x+4\)
\(A=\left(3x\right)^2+2.3x+1+3\)
\(A=\left(3x+1\right)^2+3\)
Vì \(\left(3x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(3x+1\right)^2+3\ge3\)
\(\Rightarrow Amin=3\Leftrightarrow x=-\dfrac{1}{3}\)
\(B=4x^2+4x+12\)
\(B=\left(2x\right)^2+2.2x+1+11\)
\(B=\left(2x+1\right)^2+11\)
Vì \(\left(2x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(2x+1\right)^2+11\ge11\)
\(\Rightarrow Bmin=11\Leftrightarrow x=-\dfrac{1}{2}\)
\(C=x^2+x+3\)
\(C=x^2+2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+3\)
\(C=\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\) với mọi x
\(\Rightarrow\left(x+\dfrac{1}{2}\right)^2+\dfrac{11}{4}\ge\dfrac{11}{4}\)
\(\Rightarrow Cmin=\dfrac{11}{4}\Leftrightarrow x=-\dfrac{1}{2}\)
\(D=2x^2+3x+1\)
\(D=2\left(x^2+\dfrac{3}{2}x+\dfrac{1}{2}\right)\)
\(D=2\left(x^2+2.x.\dfrac{3}{4}+\dfrac{9}{16}-\dfrac{9}{16}+\dfrac{1}{2}\right)\)
\(D=2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\)
Vì \(2\left(x+\dfrac{3}{4}\right)^2\ge0\) với mọi x
\(\Rightarrow2\left(x+\dfrac{3}{4}\right)^2-\dfrac{1}{8}\ge-\dfrac{1}{8}\)
\(\Rightarrow Dmin=-\dfrac{1}{8}\Leftrightarrow x=-\dfrac{3}{4}\)
\(E=64x^2+16x+3\)
\(E=\left(8x\right)^2+2.8x+1+2\)
\(E=\left(8x+1\right)^2+2\)
Vì \(\left(8x+1\right)^2\ge0\) với mọi x
\(\Rightarrow\left(8x+1\right)^2+2\ge2\)
\(\Rightarrow Emin=2\Leftrightarrow x=-\dfrac{1}{8}\)
\(a,\left(4x-7\right)\left(16x^2+28+49\right)=\left(4x\right)^3-7^3=64x^3-343\)\(b,\left(3x+1\right)\left(9x^2-3x+1\right)-9x\left(3x^2+9x\right)\)
\(=27x^3+1-27x^3+9x=9x+1\)