Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) A = \(\frac{3x^2+3x-3}{x^2+x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1}{1-x}-1\right)\)
A = \(\frac{3x^2+3x-3}{x^2+2x-x-2}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\left(\frac{1-1+x}{1-x}\right)\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}+\frac{x-2}{x}\cdot\frac{x}{1-x}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{x+1}{x+2}-\frac{x-2}{x-1}\)
A = \(\frac{3x^2+3x-3}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x+1\right)\left(x-1\right)}{\left(x-1\right)\left(x+2\right)}-\frac{\left(x-2\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{3x^2+3x-3-x^2+1-x^2+4}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+3x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x^2+2x+x+2}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{\left(x+1\right)\left(x+2\right)}{\left(x-1\right)\left(x+2\right)}\)
A = \(\frac{x+1}{x-1}\) (Đk: \(x-1\ge0\) => x \(\ge\)1)
b) Ta có: A = \(\frac{x+1}{x-1}=\frac{\left(x-1\right)+2}{x-1}=1+\frac{2}{x-1}\)
Để A \(\in\)Z <=> 2 \(⋮\)x - 1
<=> x - 1 \(\in\)Ư(2) = {1; -1; 2; -2}
<=> x \(\in\){2; 0; 3; -1}
c) Ta có: A < 0
=> \(\frac{x+1}{x-1}< 0\)
=> \(\hept{\begin{cases}x+1< 0\\x-1>0\end{cases}}\) hoặc \(\hept{\begin{cases}x+1>0\\x-1< 0\end{cases}}\)
=> \(\hept{\begin{cases}x< -1\\x>1\end{cases}}\)(loại) hoặc \(\hept{\begin{cases}x>-1\\x< 1\end{cases}}\)
=> -1 < x < 1
Edogawa Conan
Thiếu dòng đầu \(ĐKXĐ:\hept{\begin{cases}x\ne1\\x\ne-2\\x\ne0\end{cases}}\)
\(a,2\left(x-3\right)-5\left(2x-4\right)=0\)
=> \(2x-6-10x-20=0\)
=> \(\left(2x-10x\right)-\left(6+20\right)=0\)
=> \(-8x-26=0\)
=> \(-8x=26\)
=> \(x=26:-8=-\frac{13}{4}\)
Vậy \(x\in\left\{-\frac{13}{4}\right\}\)
\(b,3+\frac{1}{x-8}=0\)
=> \(\frac{1}{x-8}=0-3=-3\)
=> \(x-8=-\frac{1}{3}\)
=> \(x=-\frac{1}{3}+8=\frac{23}{3}\)
Vậy \(x\in\left\{\frac{23}{3}\right\}\)
\(c,\frac{8}{3}-\frac{2x+3}{5}=\frac{-7}{3}\)
=> \(15.\frac{8}{3}-15.\frac{2x+3}{5}=15.\frac{-7}{3}\)
Chiệt tiêu
=> \(5.8-3\left(2x+3\right)=5.\left(-7\right)\)
=> \(40-\left(6x+9\right)=-35\)
=> \(40-6x-9=-35\)
=>\(31=6x=-35\)
=> \(6x=41-\left(-35\right)=66\)
=> \(x=66:6=11\)
Vậy \(x\in\left\{11\right\}\)
\(d,\frac{1}{9}=\frac{5}{3x-5}=0\)
=> \(\frac{1}{9}=0\left(sai\right)\)
=> \(x\in\varnothing\)