Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{7-8x}{6}=\frac{-4+2x}{5}\)
\(\Leftrightarrow5\left(7-8x\right)=6\left(-4+2x\right)\)
\(\Leftrightarrow35-40x=-24+12x\)
\(\Leftrightarrow35+24=40x+12x\)
\(\Leftrightarrow59=52x\)
\(\Rightarrow x=\frac{59}{52}\)
\(\frac{1-3:x}{8}=\frac{8}{1-3:x}\)
\(\Leftrightarrow1-3:x=8\)
\(\Leftrightarrow-3:x=7\)
\(\Leftrightarrow x=-\frac{7}{3}\)
\(a,\frac{1}{2}+\frac{2}{3}x=\frac{4}{5}\)
=> \(\frac{2}{3}x=\frac{4}{5}-\frac{1}{2}=\frac{3}{10}\)
=> \(x=\frac{3}{10}:\frac{2}{3}=\frac{9}{20}\)
Vậy \(x\in\left\{\frac{9}{20}\right\}\)
\(b,x+\frac{1}{4}=\frac{4}{3}\)
=> \(x=\frac{4}{3}-\frac{1}{4}=\frac{13}{12}\)
Vậy \(x\in\left\{\frac{13}{12}\right\}\)
\(c,\frac{3}{5}x-\frac{1}{2}=-\frac{1}{7}\)
=> \(\frac{3}{5}x=-\frac{1}{7}+\frac{1}{2}=\frac{5}{14}\)
=> \(x=\frac{5}{14}:\frac{3}{5}=\frac{25}{42}\)
Vậy \(x\in\left\{\frac{25}{42}\right\}\)
\(d,\left|x+5\right|-6=9\)
=> \(\left|x+5\right|=9+6=15\)
=> \(\left[{}\begin{matrix}x+5=15\\x+5=-15\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=15-5=10\\x=-15-5=-20\end{matrix}\right.\)
Vậy \(x\in\left\{10;-20\right\}\)
\(e,\left|x-\frac{4}{5}\right|=\frac{3}{4}\)
=> \(\left[{}\begin{matrix}x-\frac{4}{5}=\frac{3}{4}\\x-\frac{4}{5}=-\frac{3}{4}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\frac{3}{4}+\frac{4}{5}=\frac{31}{20}\\x=-\frac{3}{4}+\frac{4}{5}=\frac{1}{20}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{31}{20};\frac{1}{20}\right\}\)
\(f,\frac{1}{2}-\left|x\right|=\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{2}-\frac{1}{3}\)
=> \(\left|x\right|=\frac{1}{6}\)
=> \(\left[{}\begin{matrix}x=\frac{1}{6}\\x=-\frac{1}{6}\end{matrix}\right.\)
Vậy \(x\in\left\{\frac{1}{6};-\frac{1}{6}\right\}\)
\(g,x^2=16\)
=> \(\left|x\right|=\sqrt{16}=4\)
=> \(\left[{}\begin{matrix}x=4\\x=-4\end{matrix}\right.\)
vậy \(x\in\left\{4;-4\right\}\)
\(h,\left(x-\frac{1}{2}\right)^3=\frac{1}{27}\)
=> \(x-\frac{1}{2}=\sqrt[3]{\frac{1}{27}}=\frac{1}{3}\)
=> \(x=\frac{1}{3}+\frac{1}{2}=\frac{5}{6}\)
Vậy \(x\in\left\{\frac{5}{6}\right\}\)
\(i,3^3.x=3^6\)
\(x=3^6:3^3=3^3=27\)
Vậy \(x\in\left\{27\right\}\)
\(J,\frac{1,35}{0,2}=\frac{1,25}{x}\)
=> \(x=\frac{1,25.0,2}{1,35}=\frac{5}{27}\)
Vậy \(x\in\left\{\frac{5}{27}\right\}\)
\(k,1\frac{2}{3}:x=6:0,3\)
=> \(\frac{5}{3}:x=20\)
=> \(x=\frac{5}{3}:20=\frac{1}{12}\)
Vậy \(x\in\left\{\frac{1}{12}\right\}\)
\(\frac{1}{3}x+\frac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\frac{1}{3}x+\frac{2}{5}x-\frac{2}{5}=0\)
\(\Leftrightarrow\frac{11}{15}x=\frac{2}{5}\)
\(\Leftrightarrow x=\frac{2}{5}\div\frac{11}{15}=\frac{2.15}{5.11}=\frac{6}{11}\)
Vậy x = 6/11
a) \(\frac{1}{3}.x+\frac{2}{5}.\left(x-1\right)=0\)
\(\frac{1}{3}.x+\frac{2}{5}.x-\frac{2}{5}=0\)
\(x.\left(\frac{1}{3}+\frac{2}{5}\right)-\frac{2}{5}=0\)
\(x.\frac{11}{15}-\frac{2}{5}=0\)
\(x.\frac{11}{15}=\frac{2}{5}\)
\(x=\frac{2}{5}:\frac{11}{15}\)
\(x=\frac{6}{11}\)
b) \(3.\left(x-\frac{1}{2}\right)-5.\left(x+\frac{3}{5}\right)=x+\frac{1}{5}\)
\(3x-\frac{3}{2}-5x-3=x+\frac{1}{5}\)
\(3x-5x-\left(\frac{3}{2}+3\right)=x+\frac{1}{5}\)
\(-2x-\frac{9}{2}=x+\frac{1}{5}\)
\(\Rightarrow-2x-x=\frac{1}{5}+\frac{9}{2}\)
\(-3x=\frac{47}{10}\)
\(x=\frac{47}{10}:\left(-3\right)\)
\(x=\frac{-47}{30}\)
Giải:
a) \(\dfrac{1}{3}x+\dfrac{2}{5}\left(x-1\right)=0\)
\(\Leftrightarrow\dfrac{1}{3}x+\dfrac{2}{5}x-\dfrac{2}{5}=0\)
\(\Leftrightarrow\dfrac{11}{15}x-\dfrac{2}{5}=0\)
\(\Leftrightarrow\dfrac{11}{15}x=\dfrac{2}{5}\)
\(\Leftrightarrow x=\dfrac{6}{11}\)
Vậy ...
b) \(3\left(x-\dfrac{1}{2}\right)-5\left(x+\dfrac{3}{5}\right)=x+\dfrac{1}{5}\)
\(\Leftrightarrow3x-\dfrac{3}{2}-5x-3=x+\dfrac{1}{5}\)
\(\Leftrightarrow-2x-\dfrac{9}{2}=x+\dfrac{1}{5}\)
\(\Leftrightarrow-3x=\dfrac{47}{10}\)
\(\Leftrightarrow x=\dfrac{-47}{30}\)
Vậy ...
a, 1/3 . x + 2/5 . ( x - 1 ) = 0
1/3 . x + 2/5 . x - 2/5 = 0
x . ( 1/3 + 2/5 ) = 0 + 2/5
x . 11/15 = 2/5
x = 2/5 : 11/15
x = 6/11
b, 3 . ( x - 1/2 ) - 5 . ( x + 3/5 ) = x + 1/5
3 . x - 3 . 1/2 - 5 . x + 5. 3/5 = x + 1/5
3x - 3/2 - 5x + 3 = x + 1/5
3x - 5x + x = 1/5 + 3/2 - 3
-3x = -13/10
x = -13/10 : -1
x = -13/10