\(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\left(a\ge0\right)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2017

\(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\)

\(=\sqrt{4^2a}+2\sqrt{4.10a}-3\sqrt{9.10a}\)

\(=\sqrt{4^2a}+2\sqrt{2^2.10a}-3\sqrt{3^2.10a}\)

\(=4\sqrt{a}+2.2\sqrt{10a}-3.3\sqrt{10a}\)

\(=4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}\)

\(=4\sqrt{a}-5\sqrt{10a}\)

12 tháng 6 2017

a)   \(2x-\sqrt{4x^2+4x+1}=2x-\sqrt{\left(2x+1\right)^2}=2x-\left|2x+1\right|\)

Vì   \(x< -\frac{1}{2}\)nên   \(\left|2x+1\right|=-\left(2x+1\right)\)

\(\Rightarrow2x+2x+1=4x+1\)

b) \(3x+2-\sqrt{9x^2-12x+4}=3x+2-\sqrt{\left(3x-2\right)^2}=3x+2-\left|3x-2\right|\)

Khi   \(x\ge\frac{2}{3}\)thì   \(\left|3x-2\right|=3x-2\)

\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-3x+2=4\)

Khi     \(x< \frac{2}{3}\)  thì  \(\left|3x-2\right|=2-3x\)

\(\Leftrightarrow3x+2-\left|3x-2\right|=3x+2-\left(2-3x\right)=6x\)

c)  \(\sqrt{9a}-\sqrt{16a}+\sqrt{49a}=3\sqrt{a}-4\sqrt{a}+7\sqrt{a}\)

Đặt   \(\sqrt{a}=x\)  ta được :  \(3x-4x+7x=6x\)\(=6\sqrt{a}\)( Do  \(a\ge0\))

d)  \(\sqrt{160a}+2\sqrt{40a}-3\sqrt{90a}=4\sqrt{10a}+4\sqrt{10a}-9\sqrt{10a}\)\(=-\sqrt{10}\)

TK NKA !!!

AH
Akai Haruma
Giáo viên
20 tháng 7 2020

Lời giải:

a)

$\sqrt{98}-\sqrt{72}+0.5\sqrt{8}=7\sqrt{2}-6\sqrt{2}+0,5.2\sqrt{2}$

$=7\sqrt{2}-6\sqrt{2}+\sqrt{2}=2\sqrt{2}$

b)

$\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}$

$=4\sqrt{a}+4\sqrt{10}.\sqrt{a}-9\sqrt{10}.\sqrt{a}$

$=(4+4\sqrt{10}-9\sqrt{10})\sqrt{a}=(4-5\sqrt{10}).\sqrt{a}$

c)

$(2\sqrt{3}+\sqrt{5})\sqrt{3}-\sqrt{60}=2.3+\sqrt{15}-2\sqrt{15}$

$=6-\sqrt{15}$

d)

$(\sqrt{99}-\sqrt{18}-\sqrt{11})\sqrt{11}+3\sqrt{32}$

$=\sqrt{99}.\sqrt{11}-\sqrt{18}.\sqrt{11}-11+3\sqrt{32}$

$=\sqrt{9}.\sqrt{11}.\sqrt{11}-3\sqrt{2}.\sqrt{11}-11+12\sqrt{2}$

$=3.11+\sqrt{2}(12-3\sqrt{11})-11$

$=22+\sqrt{2}(12-3\sqrt{11})$

a: \(=4a-4\sqrt{10a}-9\sqrt{10a}=4a-13\sqrt{10a}\)

b: \(=\sqrt{x}\left(4-\sqrt{2}\right)\cdot\sqrt{x}\left(1-\sqrt{2}\right)\)

\(=x\cdot\left(4-4\sqrt{2}-\sqrt{2}+2\right)\)

\(=\left(6-5\sqrt{2}\right)x\)

c: \(=\dfrac{2}{2x-1}\cdot x\sqrt{5}\cdot\left(2x-1\right)=2x\sqrt{5}\)

16 tháng 6 2017

đk : \(x\ne4\) ; \(x\ge0\)

1) a) Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}+\dfrac{2\sqrt{x}}{x-4}\)

Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{4-x}\)

Q = \(\dfrac{2}{2+\sqrt{x}}+\dfrac{1}{2-\sqrt{x}}-\dfrac{2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

Q = \(\dfrac{2\left(2-\sqrt{x}\right)+2+\sqrt{x}-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

Q = \(\dfrac{4-2\sqrt{x}+2+\sqrt{x}-2\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

Q = \(\dfrac{6-3\sqrt{x}}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\) = \(\dfrac{3\left(2-\sqrt{x}\right)}{\left(2+\sqrt{x}\right)\left(2-\sqrt{x}\right)}\)

Q = \(\dfrac{3}{2+\sqrt{x}}\)

b) ta có Q = \(\dfrac{6}{5}\) \(\Leftrightarrow\) \(\dfrac{3}{2+\sqrt{x}}\) = \(\dfrac{6}{5}\) \(\Leftrightarrow\) \(\dfrac{6}{4+2\sqrt{x}}\) = \(\dfrac{6}{5}\)

\(\Leftrightarrow\) \(4+2\sqrt{x}=5\) \(\Leftrightarrow\) \(2\sqrt{x}=1\) \(\Leftrightarrow\) \(\sqrt{x}=\dfrac{1}{2}\) \(\Leftrightarrow\) \(x=\dfrac{1}{4}\)

c) điều x nguyên ; x \(\ge\) 0 ; x\(\ne\) 4

ta có Q nguyên \(\Leftrightarrow\) \(\dfrac{3}{2+\sqrt{x}}\) nguyên

\(\Rightarrow\) \(2+\sqrt{x}\) là ước của 3 là 3 ; 1 ; -1 ; -3

\(2+\sqrt{x}\ge2\) (đk :\(x\ge0\)) vậy còn lại 3

\(\Leftrightarrow\) \(2+\sqrt{x}=3\) \(\Leftrightarrow\) x = 1 (tmđk)

vậy x = 1 nguyên thì Q nguyên

16 tháng 6 2017

2) a) \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\) = \(4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}\)

= \(4\sqrt{a}-5\sqrt{10a}\)

b) \(\left(2\sqrt{3}+5\right)\sqrt{3}-\sqrt{60}\) = \(6+5\sqrt{3}-\sqrt{60}\)

c) \(\left(\sqrt{99}-\sqrt{8}-\sqrt{11}\right)\sqrt{11}+3\sqrt{22}\)

= \(33-2\sqrt{22}-11+3\sqrt{22}\)

= \(22+\sqrt{22}\)

20 tháng 7 2020

a, \(=7\sqrt{2}-6\sqrt{2}+\frac{1}{2}.2\sqrt{2}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

b, \(=4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}=4\sqrt{a}-5\sqrt{10a}\)

c, \(=6+\sqrt{15}-\sqrt{60}=6+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)

Rút gọn

a) Ta có: \(\sqrt{98}-\sqrt{72}+\frac{1}{2}\sqrt{8}\)

\(=\sqrt{2}\left(\sqrt{49}-\sqrt{36}+\frac{1}{2}\sqrt{4}\right)\)

\(=\sqrt{2}\left(7-6+\frac{1}{2}\cdot2\right)\)

\(=\sqrt{2}\left(1+1\right)=2\sqrt{2}\)

b) Ta có: \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\)

\(=\sqrt{a}\left(\sqrt{16}+2\sqrt{40}-3\sqrt{90}\right)\)

\(=\sqrt{a}\left(4+4\sqrt{10}-9\sqrt{10}\right)\)

\(=\sqrt{a}\left(4-5\sqrt{10}\right)\)

\(=4\sqrt{a}-5\sqrt{10a}\)

c) Ta có: \(\left(2\sqrt{3}+\sqrt{5}\right)\cdot\sqrt{3}-\sqrt{60}\)

\(=6+\sqrt{15}-\sqrt{60}\)

\(=6-\sqrt{15}\)