\(P=\frac{2019}{\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2019

Ta xử lí mẫu trước, đặt \(a=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)

\(\Leftrightarrow a^3=\left(\sqrt[3]{2+\sqrt{5}}\right)^3+\left(\sqrt[3]{2-\sqrt{5}}\right)^3+3\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)

\(\Leftrightarrow a^3=4-3a\)

\(\Leftrightarrow a^3+3a-4=0\)

\(\Leftrightarrow\left(a-1\right)\left(a^2+a+4\right)=0\)

\(\Rightarrow a=1\)

Vậy \(P=\frac{2019}{a}=2019\)

20 tháng 7 2016

\(\frac{\sqrt{9-4\sqrt{5}}}{2-\sqrt{5}}\)

\(\frac{\sqrt{2^2-2\sqrt{5}2+\sqrt{5^2}}}{2-\sqrt{5}}\)

\(\frac{\sqrt{\left(2-\sqrt{5}\right)^2}}{2-\sqrt{5}}\)

\(\frac{\sqrt{5}-2}{2-\sqrt{5}}\)

= -1

Chúc bạn làm bài tốt :)

26 tháng 12 2016

=\(\frac{\left(\sqrt{5}-2\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)-\left(2\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}+\sqrt{3}\right)}{\left(\sqrt{5}+\sqrt{3}\right)\left(\sqrt{5}-\sqrt{3}\right)}\)

=\(\frac{5-\sqrt{15}-2\sqrt{15}+6-10-2\sqrt{15}-\sqrt{15}-3}{5-3}\)

\(=\frac{-2-6\sqrt{15}}{2}=\frac{-2\left(1+3\sqrt{15}\right)}{3}=-1-3\sqrt{15}\)

30 tháng 10 2019

1. Trục căn thức ở mẫu:

\(A=\frac{1}{1+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{9}}+\frac{1}{\sqrt{9}+\sqrt{13}}+....+\frac{1}{\sqrt{2001}+\sqrt{2005}}+\frac{1}{\sqrt{2005}+\sqrt{2009}}\)

=\(\frac{\sqrt{5}-1}{4}+\frac{\sqrt{9}-\sqrt{5}}{4}+\frac{\sqrt{13}-\sqrt{9}}{4}+....+\frac{\sqrt{2005}-\sqrt{2001}}{4}+\frac{\sqrt{2009}-\sqrt{2005}}{4}\)

\(=\frac{\sqrt{2009}-1}{4}\)

2/ \(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

=> \(x^3=\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(=3+2\sqrt{2}+3-2\sqrt{2}+3\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right).\sqrt[3]{3+2\sqrt{2}}.\sqrt[3]{3-2\sqrt{2}}\)

\(=6+3x\)

=> \(x^3-3x=6\)

=> \(B=x^3-3x+2000=6+2000=2006\)

30 tháng 10 2019

\(A=\frac{1-\sqrt{5}}{1-5}+\frac{\sqrt{5}-\sqrt{9}}{5-9}+\frac{\sqrt{9}-\sqrt{13}}{9-13}+...+\frac{\sqrt{2001}-\sqrt{2005}}{2001-2005}\)

\(A=\frac{1-\sqrt{5}+\sqrt{5}-\sqrt{9}+\sqrt{9}-\sqrt{13}+...+\sqrt{2001}-\sqrt{2005}}{-4}\)

\(A=\frac{1-\sqrt{2005}}{-4}=\frac{\sqrt{2005}-1}{4}\)