Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn nên tự nghiên cứu rồi giải đi chứ bạn đưa 1 loạt thế thì ai rảnh mà giải, với lại cứ bài gì không biết chưa chịu suy nghĩ đã hỏi rồi thì tiến bộ sao được, đúng không
a. \(\sqrt{8-2\sqrt{15}}-\sqrt{8+2\sqrt{15}}\)
= \(\sqrt{3-2\sqrt{15}+5}-\sqrt{3+2\sqrt{15}+5}\)
= \(\sqrt{\left(\sqrt{3}-\sqrt{5}\right)^2}-\sqrt{\left(\sqrt{3}+\sqrt{5}\right)^2}\)
= \(\sqrt{5}-\sqrt{3}-\sqrt{3}-\sqrt{5}\)
= \(-2\sqrt{3}\)
b. \(\dfrac{\sqrt{15}-\sqrt{5}}{\sqrt{3}-1}+\dfrac{5-2\sqrt{5}}{2\sqrt{5}-4}\)
= \(\dfrac{\left(\sqrt{15}-\sqrt{5}\right).\left(\sqrt{3}+1\right)}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(2\sqrt{5}+4\right)}{4}\)
=\(\dfrac{\sqrt{45}+\sqrt{15}-\sqrt{15}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).2\left(\sqrt{5}+2\right)}{4}\)
= \(\dfrac{3\sqrt{5}-\sqrt{5}}{2}+\dfrac{\left(5-2\sqrt{5}\right).\left(\sqrt{5}+2\right)}{2}\)
= \(\dfrac{2\sqrt{5}}{2}+\dfrac{5\sqrt{5}+10-10-4\sqrt{5}}{2}\)
= \(\sqrt{5}+\dfrac{\sqrt{5}}{2}\)
= \(\dfrac{3\sqrt{5}}{2}\)
c. \(\left(\dfrac{1}{\sqrt{5}-\sqrt{2}}+\dfrac{1}{\sqrt{5}+\sqrt{2}}\right):\dfrac{1}{\left(\sqrt{2}+1\right)^2}\)
= \(\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}}{\left(\sqrt{5}-\sqrt{2}\right).\left(\sqrt{5}+\sqrt{2}\right)}.\left(\sqrt{2}+1\right)^2\)
= \(\dfrac{2\sqrt{5}}{3}.\left(2+2\sqrt{2}+1\right)\)
= \(\dfrac{2\sqrt{5}}{3}.\left(3+2\sqrt{2}\right)\)
= \(\dfrac{6\sqrt{5}+4\sqrt{10}}{3}\)
d. \(\left(\dfrac{2}{\sqrt{3}-1}+\dfrac{3}{\sqrt{3}-2}+\dfrac{15}{3-\sqrt{3}}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(\sqrt{3}+1-3\left(\sqrt{3}+2\right)+\dfrac{5\left(3+\sqrt{3}\right)}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(\sqrt{3}+1-6-3\sqrt{3}+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\left(-2\sqrt{3}-5+\dfrac{15+5\sqrt{3}}{2}\right).\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{-4\sqrt{3}-10+15+5\sqrt{3}}{2}.\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{\sqrt{3}+5}{2}.\dfrac{1}{\sqrt{3}+5}\)
= \(\dfrac{1}{2}\)
Nếu đúng cho 1 like nhé!
\(A=-\sqrt{2}-\sqrt{1}+\sqrt{2}+\sqrt{3}-\sqrt{3}-\sqrt{4}+....-\sqrt{7}-\sqrt{8}+\sqrt{8}+\sqrt{9}\)
\(A=\sqrt{9}-\sqrt{1}=3-1=2\)
a: \(=\left(-\sqrt{5}-\sqrt{7}\right)\cdot\left(\sqrt{7}-\sqrt{5}\right)\)
\(=-\left(\sqrt{7}+\sqrt{5}\right)\left(\sqrt{7}-\sqrt{5}\right)\)
=-2
b: \(=\sqrt{2-\sqrt{3}}+\sqrt{2+\sqrt{3}}\)
\(=\dfrac{\sqrt{4-2\sqrt{3}}+\sqrt{4+2\sqrt{3}}}{\sqrt{2}}\)
\(=\dfrac{\sqrt{3}-1+\sqrt{3}+1}{\sqrt{2}}=\sqrt{6}\)
c: \(=\dfrac{\sqrt{10}\left(\sqrt{2}-\sqrt{5}\right)}{\sqrt{2}-\sqrt{5}}-2-\sqrt{10}+3\sqrt{7}+2\)
\(=\sqrt{10}-\sqrt{10}+3\sqrt{7}=3\sqrt{7}\)
a: \(=\left(2\sqrt{6}-4\sqrt{3}+5\sqrt{2}-\dfrac{1}{2}\sqrt{2}\right)\cdot5\sqrt{6}\)
\(=\left(2\sqrt{6}-4\sqrt{3}+\dfrac{9}{2}\sqrt{2}\right)\cdot5\sqrt{6}\)
\(=60-20\sqrt{18}+\dfrac{45}{2}\sqrt{12}\)
\(=60-60\sqrt{2}+45\sqrt{3}\)
b: \(=\dfrac{\sqrt{5}+\sqrt{2}+\sqrt{5}-\sqrt{2}+3}{3}\cdot\dfrac{1}{3+2\sqrt{2}}\)
\(=\dfrac{2\sqrt{5}+3}{3}\cdot\dfrac{1}{3+2\sqrt{2}}=\dfrac{2\sqrt{5}+3}{9+6\sqrt{2}}\)
2]\(\sqrt{3}\)+1+\(\sqrt{4-4\sqrt{3}+3}\)=\(\sqrt{3}+1+\sqrt{\left(2-\sqrt{3}\right)^2}=\sqrt{3}+1+2-\sqrt{3}=3\)
4\(\left(\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{\left(2-\sqrt{3}\right).\left(2+\sqrt{3}\right)}\right)=\dfrac{\sqrt{3}.\left(2+\sqrt{3}\right)+2.\left(2-\sqrt{3}\right)}{1}\)
1: \(=2\sqrt{7}-12\sqrt{7}+15\sqrt{7}+27\sqrt{7}=32\sqrt{7}\)
3: \(=\sqrt{5}-2-\sqrt{14+6\sqrt{5}}\)
\(=\sqrt{5}-2-3-\sqrt{5}=-5\)
4: \(=2\sqrt{3}+3+4-2\sqrt{3}=7\)
5: \(=3-\sqrt{2}+3+\sqrt{2}+4-3=7\)
6: \(=\sqrt{\dfrac{6+2\sqrt{5}}{4}}+\sqrt{\dfrac{14-6\sqrt{5}}{4}}\)
\(=\dfrac{\sqrt{5}+1+3-\sqrt{5}}{2}=\dfrac{4}{2}=2\)
8: \(=\sqrt{5}-1+\sqrt{\dfrac{\left(3-\sqrt{5}\right)^2}{4}}-\sqrt{\dfrac{\left(3+\sqrt{5}\right)^2}{4}}\)
\(=\sqrt{5}-1+\dfrac{3-\sqrt{5}}{2}-\dfrac{3+\sqrt{5}}{2}\)
\(=\dfrac{2\sqrt{5}-2+3-\sqrt{5}-3-\sqrt{5}}{2}=\dfrac{-2}{2}=-1\)
d) \(\dfrac{4}{\sqrt{7}-\sqrt{3}}+\dfrac{6}{3+\sqrt{3}}+\dfrac{\sqrt{7}-7}{\sqrt{7}-1}\)
\(=\dfrac{4\left(\sqrt{7}+\sqrt{3}\right)}{\left(\sqrt{7}-\sqrt{3}\right)\left(\sqrt{7}+\sqrt{3}\right)}+\dfrac{6\left(3-\sqrt{3}\right)}{\left(3+\sqrt{3}\right)\left(3-\sqrt{3}\right)}-\dfrac{7-\sqrt{7}}{\sqrt{7}-1}\)
\(=\dfrac{4\left(\sqrt{7}+\sqrt{3}\right)}{4}+\dfrac{6\left(3-\sqrt{3}\right)}{6}-\dfrac{\sqrt{7}\left(\sqrt{7}-1\right)}{\sqrt{7}-1}\)
\(=\sqrt{7}+\sqrt{3}+3-\sqrt{3}-\sqrt{7}=3\)
b) \(\dfrac{\sqrt{5}-\sqrt{15}}{1-\sqrt{3}}-\sqrt{21+4\sqrt{5}}=\dfrac{\sqrt{5}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}-\sqrt{20+2\sqrt{20}+1}\)
\(=\sqrt{5}-\sqrt{\left(\sqrt{20}+1\right)^2}=\sqrt{5}-\left(\sqrt{20}+1\right)=\sqrt{5}-2\sqrt{5}-1=-1-\sqrt{5}\)
♡
\(\dfrac{2}{1-\sqrt{2}}-\dfrac{2}{1+\sqrt{2}}\)
\(=\dfrac{2\left(1+\sqrt{2}\right)-2\left(1-\sqrt{2}\right)}{\left(1-\sqrt{2}\right)\left(1+\sqrt{2}\right)}\)
\(=\dfrac{2+2\sqrt{2}-2+2\sqrt{2}}{1-2}=-4\sqrt{2}\)
♡
\(\left(\dfrac{\sqrt{6}-\sqrt{2}}{1-\sqrt{3}}-\dfrac{5}{\sqrt{5}}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=\left[-\dfrac{\sqrt{2}\left(1-\sqrt{3}\right)}{1-\sqrt{3}}-\sqrt{5}\right]\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-\left(\sqrt{5}+\sqrt{2}\right)\left(\sqrt{5}-\sqrt{2}\right)\)
\(=-3\)
♡
\(\dfrac{2}{7+4\sqrt{3}}+\dfrac{2}{7-4\sqrt{3}}\)
\(=\dfrac{2\left(7-4\sqrt{3}\right)+2\left(7+4\sqrt{3}\right)}{\left(7+4\sqrt{3}\right)\left(7-4\sqrt{3}\right)}\)
\(=\dfrac{14-8\sqrt{3}+14+8\sqrt{3}}{49-48}\)
= 28
♡
\(\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{2}{3-\sqrt{5}}}\)
\(=\dfrac{2}{\sqrt{5}+1}-\sqrt{\dfrac{4}{6-2\sqrt{5}}}\)
\(=\dfrac{2}{\sqrt{5}+1}-\dfrac{2}{\sqrt{\left(\sqrt{5}-1\right)^2}}\)
\(=\dfrac{2\left(\sqrt{5}-1\right)-2\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)\left(\sqrt{5}-1\right)}\)
\(=\dfrac{2\sqrt{5}-2-2\sqrt{5}-2}{5-1}\)
= - 1
♡
\(\dfrac{4}{1-\sqrt{3}}-\dfrac{\sqrt{15}+\sqrt{3}}{1+\sqrt{5}}\)
\(=\dfrac{4\left(1+\sqrt{3}\right)}{1-3}-\dfrac{\sqrt{3}\left(\sqrt{5}+1\right)}{\left(\sqrt{5}+1\right)}\)
\(=-2-2\sqrt{3}-\sqrt{3}=-2-3\sqrt{3}\)
♡
\(\dfrac{\sqrt{2}}{2\sqrt{2}+\sqrt{3+\sqrt{5}}}\)
\(=\dfrac{2}{4+\sqrt{6+2\sqrt{5}}}\) (nhân [căn 2] vào cả tử và mẫu)
\(=\dfrac{2}{4+\sqrt{\left(\sqrt{5}+1\right)^2}}\)
\(=\dfrac{2}{5+\sqrt{5}}=\dfrac{2\left(5-\sqrt{5}\right)}{25-5}=\dfrac{5-\sqrt{5}}{10}\)
\(M=\dfrac{8\left(\sqrt{5}+\sqrt{3}\right)}{2}-\dfrac{7\left(2+\sqrt{3}\right)}{4-3}+\dfrac{4\left(\sqrt{2}+1\right)}{2-1}+\dfrac{\sqrt{15}\left(\sqrt{3}-1\right)}{\sqrt{15}}\)
\(=4\left(\sqrt{5}+\sqrt{3}\right)-14-7\sqrt{3}+4\sqrt{2}+4+\sqrt{3}-1\)
\(=4\sqrt{5}+4\sqrt{3}-6\sqrt{3}+4\sqrt{2}-11\)
\(=4\sqrt{5}-2\sqrt{3}+4\sqrt{2}-11\)
\(M=\dfrac{8\left(\sqrt{5}+\sqrt{3}\right)}{5-3}+\dfrac{7\left(\sqrt{3}+2\right)}{3-4}+\dfrac{4\left(\sqrt{2}+1\right)}{2-1}+\dfrac{\sqrt{15}\left(\sqrt{3}-1\right)}{\sqrt{15}}\)
\(=4\sqrt{5}+4\sqrt{3}-7\sqrt{3}-14+4\sqrt{2}+4+\sqrt{3}-1\)
\(=4\sqrt{5}-2\sqrt{3}+4\sqrt{2}-11\)