K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2015

\(=\frac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)

\(=\frac{x^3-6x^2y}{x-6y}=\frac{x^2\left(x-6y\right)}{x-6y}=x^2\)

23 tháng 4 2016

smile làm đúng đó ai đồng ý thì ủng hộ nha

6 tháng 11 2016

\(\frac{\left(x-y\right)^3-3xy\left(x+y\right)+y^3}{x-6y}\)

\(=\frac{x^3-3x^2y+3xy^2-y^3-3x^2y-3xy^2+y^3}{x-6y}\)

\(=\frac{x^3-6x^2y}{x-6y}\)

\(=\frac{x^2\left(x-6y\right)}{x-6y}\)

\(=x^2\)

chúc bạn học giỏi 

6 tháng 11 2016

(x-y)3 - 3xy(x+y) + y3

x - 6y

x3 - 3x2y +3xy2 - y3 - 3x2y - 3xy2 + y3

x - 6y

x3 - 6x2y

x - 6y

x2(x-6y)

x - 6y

= x2

1 tháng 12 2017

c) hang dang thuc ( x -y+z)^2

o duoi phan h hang dang thuc luon

a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)

mau la (x-1)(2x^2 -x-3)

 b ) k nhin dc de

22 tháng 10 2021

\(\frac{\left(x-y\right)^3+3xy.\left(x+y\right)+y^3}{x-6y}\)

\(=\frac{x^3-3x^2y+3xy^2-y^3+3x^2y+3xy^2+y^3}{x-6y}\)

\(=\frac{x^3+\left(-3x^2y+3x^2y\right)+\left(3xy^2+3xy^2\right)+\left(-y^3+y^3\right)}{x-6y}\)

\(=\frac{x^3+6xy^2}{x-6y}\)

27 tháng 5 2017

\(\left[\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}.\left(\dfrac{x^2}{y}-\dfrac{y^2}{x}\right)\right]:\dfrac{x-y}{x}\)

= \(\left(\dfrac{x^2-y^2}{xy}-\dfrac{1}{x+y}\cdot\dfrac{x^3-y^3}{xy}\right)\cdot\dfrac{x}{x-y}\)

= \(\dfrac{\left(x^2-y^2\right)\left(x+y\right)-x^3+y^3}{xy\left(x+y\right)}\cdot\dfrac{x}{x-y}\)

= \(\dfrac{xy\left(x-y\right)}{y\left(x+y\right).\left(x-y\right)}\)

= \(\dfrac{x}{x+y}\)

Sửa đề; \(D=\left(\dfrac{\sqrt{x}+\sqrt{y}}{2\sqrt{x}-2\sqrt{y}}-\dfrac{2\sqrt{xy}}{x-y}\right)\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(D=\dfrac{x+2\sqrt{xy}+y-4\sqrt{xy}}{2\left(x-y\right)}\cdot\dfrac{2\sqrt{x}}{\sqrt{x}-\sqrt{y}}\)

\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)^2}{\sqrt{x}-\sqrt{y}}\cdot\dfrac{\sqrt{x}}{x-y}=\dfrac{\sqrt{x}}{\sqrt{x}+\sqrt{y}}\)

 

Bài 1:Tínha) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)Bài 2:Phân tích đa thức thành nhân tửa) \(x^2-3x-15\)b) \(x^2-9x+4\)c) \(x^2-12x+32\)d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)e) \(x^4-2x^3-3x^2-4x-1\)f) \(x^3+x^2-x+2\)Bài 3: Cho x,y là các số thực...
Đọc tiếp

Bài 1:Tính

a) \(\left(x+2\right)\left(x^2-2x+4\right)+\left(1-x\right)\left(1+x+x^2\right)\)

b) \(7x\left(4x-2\right)-\left(x-3\right)\left(x+1\right)+16x\)

c) \(A=\frac{x^2-6xy+9y^2}{x^2-9y^2}\)

d) \(B=\frac{8}{x^2+4x}+\frac{5}{x+4}-\frac{2}{x}\)

Bài 2:Phân tích đa thức thành nhân tử

a) \(x^2-3x-15\)

b) \(x^2-9x+4\)

c) \(x^2-12x+32\)

d) \(x\left(x+1\right)\left(x+2\right)\left(x+3\right)+1\)

e) \(x^4-2x^3-3x^2-4x-1\)

f) \(x^3+x^2-x+2\)

Bài 3: Cho x,y là các số thực sao cho \(x+y\);\(x^2+y^2\);\(x^4+y^4\)là các số nguyên.CMR: \(2x^2y^2\)và \(x^3+y^3\)là các số nguyên

Bài 4: Rút gọn phân thức:

a) \(\frac{x^3+y^3+z^3\cdot3xyz}{\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2}\)

b) \(\frac{x^4-2x^2+1}{x^3-3x-2}\)

Bài 5:Cho \(abc=1\)

Tính giá trị của biểu thức \(M=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

Đề thi bắt đầu đến 11 h kế thúc có 1 giải 1 và 2 giải 2 thui nha cố lên nào giải 3 vô hạn nhưng trên 5 điểm

 

11
14 tháng 9 2019

a. \(=x^3+2^3+1^3-x^3\)

\(=\left(x^3-x^3\right)+8+1\)

\(=0+8+1\)

\(=9\)

14 tháng 9 2019

Bài 1 :

a) ( x + 2 )( x2 - 2x + 4 ) + (1 - x)(1+x+ + x2 )

= ( x3 - 8 ) + ( 1 - x3 )

= x3 - 8 + 1 - x3

= 7

b) 7x( 4x - 2) - ( x - 3)( x+1 ) + 16x

= 28x2 - 14x - x2 - x + 3x + 3 + 16x

= 27x2  + 3