K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 8 2016

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\left(ĐK:x\ne0;y\ne0\right)\)

\(=\frac{2}{xy}:\left(\frac{y-x}{xy}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{2}{xy}\cdot\frac{x^2y^2}{\left(y-x\right)^2}-\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{-2xy}{\left(x-y\right)^2}+\frac{x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{-2xy+x^2+y^2}{\left(x-y\right)^2}\)

\(=\frac{\left(x-y\right)^2}{\left(x-y\right)^2}=1\)

 

3 tháng 8 2016

\(\frac{2}{xy}:\left(\frac{1}{x}-\frac{1}{y}\right)^2-\frac{x^2+y^2}{\left(x-y\right)^2}\left(dk:x\ne y\ne0\right)\)

miik ko nghĩ nó là toán lớp 7 đâu bn

26 tháng 12 2016

=\(\left(\frac{1}{x\left(x-y\right)}-\frac{3y^2}{x\left(x-y\right)\left(x^2+xy+y^2\right)}-\frac{y}{x\left(x^2+xy+y^2\right)}\right)\)\(\left(\frac{y\left(x+y\right)+x^2}{x+y}\right)\)

=\(\left(\frac{x^2+xy+y^2-3y^2-y\left(x-y\right)}{x\left(x-y\right)\left(x^2+xy+y^2\right)}\right)\) \(\left(\frac{x^2+xy+y^2}{x+y}\right)\)

=\(\left(\frac{x^2+xy-2y^2-xy+y^2}{x\left(x-y\right)}\right)\left(\frac{1}{x+y}\right)\)

=\(\frac{x^2-y^2}{x\left(x-y\right)\left(x+y\right)}\)=\(\frac{\left(x-y\right)\left(x+y\right)}{x\left(x-y\right)\left(x+y\right)}\) =\(\frac{1}{x}\)

6 tháng 7 2016

Đây mà là toán lp 7 à???

6 tháng 7 2016

mk ko biết cứ bấm đại thui, bn có thể giúp mk ko ???

30 tháng 7 2016

\(=\left(\frac{x^3+8}{4x}\right):\left(\frac{x^2-2x+4}{4x}\right)=\frac{\left(x+2\right)\left(x^2-2x+4\right)}{4x}.\frac{4x}{\left(x^2-2x+\right)}=x+2\)

28 tháng 5 2016

ko biết

28 tháng 5 2016

Chưa cập nhật

\(=\dfrac{x^3-1}{x}\cdot\dfrac{x^2-1+x^2+x+1}{\left(x-1\right)\left(x^2+x+1\right)}=\dfrac{2x^2+x}{x}=2x+1\)

\(=\dfrac{a+x+1}{a+x}:\dfrac{a+x-1}{a+x}\cdot\left(\dfrac{2ax-1+a^2+x^2}{2ax}\right)\)

\(=\dfrac{a+x+1}{a+x-1}\cdot\dfrac{\left(a+x\right)^2-1}{2ax}\)

\(=\dfrac{a+x+1}{a+x-1}\cdot\dfrac{\left(a+x+1\right)\left(a+x-1\right)}{2ax}\)

\(=\dfrac{\left(a+x+1\right)^2}{2ax}\)

Bài 1: Thu gọn a) \(\frac{1}{5}x^4y^3-3x^4y^3\) b) \(5x^2y^5-\frac{1}{4}x^2y^5\) c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\) d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\) e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\) f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\) g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\) h)...
Đọc tiếp

Bài 1: Thu gọn

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

c) \(\frac{1}{7}x^2y^3.\left(-\frac{14}{3}xy^2\right)-\frac{1}{2}xy.\left(x^2y^{\text{4}}\right)\)

d) \(\left(3xy\right)^2.\left(-\frac{1}{2}x^3y^2\right)\)

e) \(-\frac{1}{4}xy^2+\frac{2}{5}x^2y+\frac{1}{2}xy^2-x^2y\)

f) \(\frac{1}{2}x^4y.\left(-\frac{2}{3}x^3y^2\right)-\frac{1}{3}x^7y^3\)

g) \(\frac{1}{2}x^2y.\left(-10x^3yz^2\right).\frac{1}{4}x^5y^3z\)

h) \(4.\left(-\frac{1}{2}x\right)^2-\frac{3}{2}x.\left(-x\right)+\frac{1}{3}x^2\)

i) \(1\frac{2}{3}x^3y.\left(\frac{-1}{2}xy^2\right)^2-\frac{5}{4}.\frac{8}{15}x^3y.\left(-\frac{1}{2}xy^2\right)^2\)

k) \(-\frac{3}{2}xy^2.\left(\frac{3}{4}x^2y\right)^2-\frac{3}{5}xy.\left(-\frac{1}{3}x^4y^3\right)+\left(-x^2y\right)^2.\left(xy\right)^2\)

n) \(-2\frac{1}{5}xy.\left(-5x\right)^2+\frac{3}{4}y.\frac{2}{3}\left(-x^3\right)-\frac{1}{9}.\left(-x\right)^3.\frac{1}{3}y\)

m) \(\left(-\frac{1}{3}xy^2\right)^2.\left(3x^2y\right)^3.\left(-\frac{5}{2}xy^2z^3\right)^{^2}\)

p) \(-2y.\left|2\right|x^4y^5.\left|-\frac{3}{4}\right|x^3y^2z\)

1
26 tháng 7 2019

Bài 1:

a) \(\frac{1}{5}x^4y^3-3x^4y^3\)

= \(\left(\frac{1}{5}-3\right)x^4y^3\)

= \(-\frac{14}{5}x^4y^3.\)

b) \(5x^2y^5-\frac{1}{4}x^2y^5\)

= \(\left(5-\frac{1}{4}\right)x^2y^5\)

= \(\frac{19}{4}x^2y^5.\)

Mình chỉ làm 2 câu thôi nhé, bạn đăng nhiều quá.

Chúc bạn học tốt!

29 tháng 7 2019

cảm ơn nha

chúc bạn học tốt

16 tháng 7 2016

\(A=\frac{x^2}{x^2-1}-\frac{x^2}{x^2+1}\left(\frac{x}{x+1}+\frac{1}{x^2+x}\right)\)

=>\(A=\frac{x^2}{\left(x-1\right)\left(x+1\right)}-\frac{x^2}{x^2+1}\left[\frac{x}{x+1}+\frac{1}{x\left(x+1\right)}\right]\)

=>\(A=\frac{x^2}{\left(x-1\right)\left(x+1\right)}-\frac{x^2}{x^2+1}\left[\frac{x^2}{x\left(x+1\right)}+\frac{1}{x\left(x+1\right)}\right]\)

=>\(A=\frac{x^2}{\left(x-1\right)\left(x+1\right)}-\frac{x^2}{x^2+1}.\frac{x^2+1}{x\left(x+1\right)}\)

=>\(A=\frac{x^2}{\left(x-1\right)\left(x+1\right)}-\frac{x}{x+1}\)

=>\(A=\frac{x^2}{\left(x-1\right)\left(x+1\right)}-\frac{x\left(x-1\right)}{\left(x+1\right)\left(x-1\right)}\)

=>\(A=\frac{x^2-x\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)

=>\(A=\frac{x^2-x^2+x}{\left(x-1\right)\left(x+1\right)}\)

=>\(A=\frac{x}{x^2-1}\)