\(A=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 3 2017

bạn Trần Thu Hoài Giải ra 50

2 tháng 3 2017

Giải

\(A=\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{49.51}}\)

4 tháng 3 2017

A=100

5 tháng 3 2017

lam kieu gi the

10 tháng 4 2015

Nhớ có lời giải lun nghe!!!

3 tháng 2 2019

Đặt \(B=1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\)

\(=\left(1+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)\)

\(=\frac{100}{99}+\frac{100}{3\times97}+\frac{100}{5\times95}+...+\frac{100}{49\times51}\)

\(=100\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

Đặt \(C=\frac{1}{1\times99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{97\times3}+\frac{1}{99\times1}\)

\(=2\left(\frac{1}{99}+\frac{1}{3\times97}+\frac{1}{5\times95}+...+\frac{1}{49\times51}\right)\)

\(A=\frac{B}{6}=\frac{100}{2}=50\)

Vậy \(A=50\)

14 tháng 2 2017

bài này mình làm rồi nhung quên mất

23 tháng 2 2017

Thế thì nói chuyện làm gì

3 tháng 2 2016

=1/2

bn cho mk xem lai cach lam nha

3 tháng 2 2016

=100 mới đúng

28 tháng 2 2016

 \(\frac{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}}{\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{49.51}}\)

=  \(\frac{100\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}{100\left(\frac{1}{1.99}+\frac{1}{3.97}+\frac{1}{5.95}+...+\frac{1}{49.51}\right)}\)

=  \(\frac{100\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}{\frac{1+99}{1.99}+\frac{3+97}{3.97}+\frac{5+95}{5.95}+...+\frac{49+51}{49.51}}\)

\(\frac{100\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}{\left(\frac{1}{1}+\frac{1}{99}\right)+\left(\frac{1}{3}+\frac{1}{97}\right)+\left(\frac{1}{5}+\frac{1}{95}\right)+...+\left(\frac{1}{49}+\frac{1}{51}\right)}\)

=  \(\frac{100\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{97}+\frac{1}{99}\right)}{1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{49}+\frac{1}{51}+...+\frac{1}{99}}\)

= 100 

19 tháng 9 2016

\(\frac{1}\)

9 tháng 12 2018

May ý kiến gì