Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(\frac{32x-8x^2+2x^3}{x^3+64}=\frac{x\left(32-8x+2x^2\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\frac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}=\frac{2x}{x+4}\)
\(\dfrac{x^3+64}{2x^3-8x^2+32x}\\ =\dfrac{\left(x+4\right)\left(x^2-4x+16\right)}{2x\left(x^2-4x+16\right)}\\ =\dfrac{x+4}{2x}\)
\(\dfrac{x^3+64}{2x^3-8x^3+32x}\)
\(=\dfrac{\left(x+4\right)\left(x^2-4x+16\right)}{2x\left(x^2-4x+16\right)}\)
\(=\dfrac{x+4}{2x}\)
Nguyễn Huệ Lam ơi cái câu b bn làm sai r cái đoạn đặt ntu chung là 2 x đầu tiên ấy bn
a)
\(\frac{9-\left(x+5\right)^2}{x^2+4x+4}=\frac{3^2-\left(x+5\right)^2}{x^2+2.x.2+2^2}=\frac{\left(3+x+5\right)\left(3-x-5\right)}{\left(x+2\right)^2}\)
\(=\frac{\left(x+8\right)\left(x-2\right)}{\left(x+2\right)^2}\)
b)
\(\frac{32x-8x^2+2x^3}{x^3+64}=\frac{2x\left(x^2-8x+16\right)}{x^3+4^3}=\frac{2x\left(x^2-2.x.4+4^2\right)}{\left(x+4\right)\left(x^2-4x+16\right)}\)
\(=\frac{2x\left(x-4\right)^2}{\left(x+4\right)\left(x^2-4x+16\right)}\)
a) (2x^2 +2xy - xy -y^2 ) / (2x^2 - 2xy - xy +y^2)
= 2x(x+y) - y(x+y) / 2x(x-y) - y(x-y)
= (2x-y)(x+y) / (2x-y)(x-y)
= x+y/x-y
Rút gọn cái sau:
\(\frac{32x+4x^2+2x^3}{x^3+64}\)
\(=\frac{2x\left(x^2+2x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}\)
Đề có vẻ sai sai ?
a) A=\(\frac{x+1}{6x^3-6x^2}-\frac{x-2}{8x^3-8x}=\frac{x+1}{6x^2\left(x-1\right)}-\frac{x-2}{8x\left(x-1\right)\left(x+1\right)}=\frac{4\left(x+1\right)^2-3x\left(x-2\right)}{24x^2\left(x-1\right)\left(x+1\right)}=\frac{4x^2+8x+4-3x^2+6x}{24x^2\left(x-1\right)\left(x+1\right)}=\frac{x^2+14x+10}{24x^2\left(x-1\right)\left(x+1\right)}\)
\(A =\frac{32x - 8x^{2} + 2x^{3}}{x^{3}+ 64}\)\(= \frac{2x(16 - 4x + x^{2})}{(x + 4)(x^{2} - 4x + 16)}= \frac{2x(x^{2} - 4x + 16)}{(x + 4)(x^{2} - 4x + 16)}= \frac{2x}{x + 4}\)
\(A=\dfrac{32x-8x^2+2x^3}{x^3+64}\)
\(=\dfrac{2x\left(16-4x+x^2\right)}{\left(x+4\right)\left(x^2-4x+16\right)}\)
\(=\dfrac{2x\left(x^2-4x+16\right)}{\left(x+4\right)\left(x^2-4x+16\right)}\)
\(=\dfrac{2x}{x+4}\).