Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : S =\(1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2017}-\frac{1}{2018}+\frac{1}{2019}\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2017}+\frac{1}{2018}+\frac{1}{2019}\)\(-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{2018}\right)\)
\(\Rightarrow S=1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{2019}\)\(-\left(1+\frac{1}{2}+...+\frac{1}{1009}\right)\)
\(\Rightarrow S=\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2019}\)
\(\Rightarrow S=P\)
Khi đó : \(\left(S-P\right)^{2018}=0^{2018}=0\)
k chi mik nha!
-.-
Ơ !!! Bài này giống bài 5 môn Toán thi cuối học kỳ 2 trường mình nè !!!
73.52+52.28-52
=52.(73+28-1)
=52.100
=25.100
=2500
5x+53=1010
5x+125=1010
5x=1010-125
5x=885
x=885:5
x=177
2727:(158-x)=27
158-x=2727:27
158-x=101
x=158-101
x=57
5x + 125 = 1010
5x = 1010 - 125
5x = 885
x = 885 : 5
x = 177
b,(723+277).2001-(456+544).1010-389-611
=1000.2001-1000.1010-(389+611)
=1000.2001-1000.1010-1000
=1000.(2001-1010-1)
=1000.990
=990000
a, 92.53+12.92-81+36.92
=92.(53+12+36)-81
=81.101-81
=8181-81
=8100
3A=3^2 +.. + 3^1011
=> 2A = 3^1011 -3 => 2A +3 = 3^1011=3^(3.337)=(3^3)^337=27^337
Ta có : A = 1 + 2 + 3 + ... + 2008
\(A=\frac{\left(2008+1\right)\left[\left(2008-1\right)\div1+1\right]}{2}\)
\(A=\frac{2009.2008}{2}\)
\(A=2017036\)
Ta có: B = 1 + 2 + 3 + ... + 1010
\(B=\frac{\left(1010+1\right)\left[\left(1010-1\right):1+1\right]}{2}\)
\(B=\frac{1011.1010}{2}\)
\(B=510555\)
\(A=1+2+3+4+5+...+2008\)
\(A=\left(2008+1\right)\left(\left(2008-1\right):1+1\right):2=2009.2008:2\)
\(=2009.1004=2017036\)
\(B=1+2+3+4+...+1010\)
\(B=\left(1010+1\right)\left(\left(1010-1\right):1+1\right):2=1011.\left(1010:2\right)\)
\(=1011.505=510555\)
\(C=2+5+8+11+...+302\)
\(C=\left(302+2\right)\left(\left(302-2\right):3+1\right):2=304.101:2\)
\(=15352\)
\(D=3+3^2+3^3+3^4+...+3^{2019}\)
\(3D=3^2+3^3+3^4+...+3^{2020}\)
\(3D-D=\left(3^2+3^3+3^4+...+3^{2020}\right)-\left(3+3^2+3^3+3^4+...+3^{2019}\right)\)
\(2D=3^{2020}-3\)
\(\Rightarrow D=\frac{3^{2020}-3}{2}\)
\(E=4^{10}+4^{11}+4^{12}+...+4^{100}\)
\(4E=4^{11}+4^{12}+4^{13}+...+4^{101}\)
\(4E-E=\left(4^{11}+4^{12}+4^{13}+...+4^{101}\right)-\left(4^{10}+4^{11}+4^{12}+...+4^{100}\right)\)
\(3E=4^{101}-4^{10}\)
\(E=\frac{4^{101}-4^{10}}{3}\)
\(S=1010+1010^2+1010^3+...+1010^{1011}\)
Suy ra \(1010.S=1010^2+1010^3+1010^4+....+1010^{1012}\)
Nên\(1010.S-S=1010^{1012}-1010\)hay\(1009.S=1010^{1012}-1010\)
Khi đó \(S=\frac{1010^{1012}-1010}{1009}\)
S=1011+1010^2+1010^3+...+1010^1011
S=1+1010+1010^2+1010^3+...+1010^1011
1010.S=1010+1010^2+1010^3+1010^4+...+1010^1012
1010 S - S=1010^1012-1
1009 S=1010^1012-1
S=(1010^1012-1):1009