K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 11 2017

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

55555555555555555

666666666666666666666666666

88888888888888888888

\(A=\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)\)

\(=\left(x+y\right)^2-2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)

\(=\left[\left(x+y\right)-\left(x-y\right)\right]^2\)

\(=\left[x+y-x+y\right]^2\)

\(=\left(2y\right)^2=\left[2\left(-2\right)\right]^2=\left(-4\right)^2=16\)

2 tháng 8 2019

\(A=\left(x+y\right)^2+\left(x-y\right)^2-2\left(x+y\right)\left(x-y\right)\)

\(A=x^2+2xy+y^2+x^2-2xy+y^2-2\left(x+y\right)\left(x-y\right)\)

\(A=x^2+2xy+y^2+x^2-2xy+y^2-\left(2x+2y\right)\left(x-y\right)\)

\(A=x^2+2xy+y^2+x^2-2xy+y^2-2x^2+2xy-2yx+2y^2\)

\(A=\left(x^2+x^2-2x^2\right)+\left(2xy-2xy+2xy-2xy\right)+\left(y^2+y^2+2y^2\right)\)

\(A=4y^2\) (1)

Thay y = -2 vào (1), ta cóL

\(A=4y^2=4.\left(-2\right)^2=16\)

Vậy: A với y = -2: 16

27 tháng 7 2016

a) x(x – y) + y (x + y) = x2 – xy +yx + y2= x2+ y2

với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100

b) x(x – y) – x(x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 – yx= (2x-2y) – (x2 -2xy +y2) =2(x-y) – (x-y)2

Với x =1/2, y = -100 biểu thức có giá trị là -2 . 1/2. (-100) = 100.

27 tháng 7 2016

a) x(x – y) + y (x + y) = x2 – xy +yx + y2= x2+ y2

với x = -6, y = 8 biểu thức có giá trị là (-6)2 + 82 = 36 + 64 = 100

b) x(x2  – y) – x2 (x + y) + y (x2– x) = x3 – xy – x3 – x2y + yx2 – yx= (2x-2y) – (x2 -2xy +y2) =2(x-y) – (x-y)2

Với x = \(\frac{1}{2}\), y = -100 biểu thức có giá trị là -2 . \(\frac{1}{2}\). (-100) = 100.

10 tháng 7 2020

làm sao nhỉ

16 tháng 3 2019

1 ) Đề bài > not \(\ge\)

Giả sử đpcm là đúng , khi đó , ta có :

\(x^2+y^2+8>xy+2x+2y\)

\(\Leftrightarrow2x^2+2y^2+16>2xy+4x+4y\)

\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2-4x+4\right)+\left(y^2-4y+4\right)+8>0\)

\(\Leftrightarrow\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8>0\left(1\right)\)

Do \(\left(x-y\right)^2+\left(x-2\right)^2+\left(y-2\right)^2+8\ge8>0\forall x;y\left(2\right)\)

Từ ( 1 ) ; ( 2 ) => Điều giả sử là đúng => đpcm

2 ) ĐK : a ; b ; c không âm

Áp dụng BĐT phụ \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}\) ( cái này bạn áp dụng BĐT Cô - si để c/m ) , ta có :

\(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\ge\frac{9}{a+b+b+c+c+a}=\frac{9}{6.2}=\frac{3}{4}\)

Dấu " = " xảy ra \(\Leftrightarrow a=b=c=2\)

3 ) Áp dụng BĐT Cô - si cho các cặp số không âm , ta có :

\(x^2+y^2\ge2xy;y^2+z^2\ge2yz;x^2+z^2\ge2xz\)

\(\Rightarrow2x^2+2y^2+2z^2\ge2xy+2yz+2xz\left(1\right)\)

\(x^2+1\ge2x;y^2+1\ge2y;z^2+1\ge2z\)

\(\Rightarrow x^2+y^2+z^2+3\ge2x+2y+2z\left(2\right)\)

Từ ( 1 ) ; ( 2 ) , ta có : \(2x^2+2y^2+2z^2+x^2+y^2+z^2+3\ge2xy+2yz+2xz+2x+2y+2z\)

\(\Rightarrow3\left(x^2+y^2+z^2+1\right)\ge2\left(x+y+z+2xy+2xz+2yz\right)=2.6=12\)

\(\Rightarrow x^2+y^2+z^2+1\ge4\)

\(\Rightarrow x^2+y^2+z^2\ge3\)

Dấu " = " xảy ra \(\Leftrightarrow x=y=z=1\)

2 tháng 12 2016

vay la sao

2 tháng 12 2016

thì là các bạn chứng minh sao cho vế trái >= vế phải