K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Ta có: \(A=x^3+6x^2+12x+8\)

\(=x^3+3\cdot x^2\cdot2+3\cdot x\cdot2^2+2^3\)

\(=\left(x+2\right)^3\)

Thay x=8 vào biểu thức \(A=\left(x+2\right)^3\), ta được:

\(A=\left(8+2\right)^3=10^3=1000\)

Vậy: 1000 là giá trị của biểu thức \(A=x^3+6x^2+12x+8\) tại x=8

b) Ta có: \(B=x^3-3x^2+3x-1\)

\(=x^3-3\cdot x^2\cdot1+3\cdot x\cdot1^2-1^3\)

\(=\left(x-1\right)^3\)

Thay x=101 vào biểu thức \(B=\left(x-1\right)^3\), ta được:

\(B=\left(101-1\right)^3=100^3=1000000\)

Vậy: 1000000 là giá trị của biểu thức \(B=x^3-3x^2+3x-1\) tại x=101

c) Ta có: \(C=\left(\frac{x}{2}-y\right)^3-6\left(y-\frac{x}{2}\right)^2-12\left(y-\frac{x}{2}\right)-8\)

\(=\left(\frac{x}{2}-y\right)^3-6\cdot\left(\frac{x}{2}-y\right)^2+12\cdot\left(\frac{x}{2}-y\right)-8\)

\(=\left(\frac{x}{2}-y-2\right)^3\)

Thay x=4 và y=2 vào biểu thức \(C=\left(\frac{x}{2}-y-2\right)^3\), ta được:

\(C=\left(\frac{4}{2}-2-2\right)^3=\left(2-2-2\right)^3=\left(-4\right)^3=-64\)

Vậy: -64 là giá trị của biểu thức \(C=\left(\frac{x}{2}-y\right)^3-6\left(y-\frac{x}{2}\right)^2-12\left(y-\frac{x}{2}\right)-8\) tại x=4 và y=2

17 tháng 8 2020

a) \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x=-x\left(x+3\right)=-3\left(3+3\right)=-18\)

b) \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2=3\left(x^2-\frac{4}{5}y^2\right)\)

\(=3\left(4^2-\frac{4}{5}.5^2\right)=3.\left(-4\right)=-12\)

c) \(\left(x-2\right)^2-\left(x+7\right)\left(x-7\right)=x^2-4x+4-x^2+49=-4x+53=-4.3+53=41\)

d) \(x^2+12x+36=\left(x+6\right)^2=\left(64+6\right)^2=70^2=4900\)

e) \(\left(x-3\right)^2-\left(x-4\right)\left(x+4\right)=x^2-6x+9-x^2+16=-6x+25=-6\left(-1\right)+25\)

= 31

f) \(\left(3x+2y\right)^2-4y\left(3x+y\right)=9x^2+12xy+4y^2-12xy-4y^2=9x^2=9\left(-\frac{1}{3}\right)^2=1\)

17 tháng 8 2020

a, \(5x^2-2x\left(3x+\frac{3}{2}\right)=-x^2-3x\)

Thay x = 3 vào biểu thức trên ta cs : \(-3^2-3.3=-9-9=-18\)

b, \(3x\left(x-4y\right)-\frac{12}{5}y\left(y-5x\right)=3x^2-\frac{12}{5}y^2\)

Thay x = 4 ; y = 5 vào biểu thức trên ta có : \(3.4^2-\frac{12}{5}.5^2=-12\)

22 tháng 9 2018

a, \(A=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(9x^2-4\right)\)

      \(=\left(3x-2\right)^2+\left(3x+2\right)^2+2\left(3x-2\right)\left(3x+2\right)\)

      \(=\left(3x-2+3x+2\right)^2\)

      \(=36x^2=36.\left(-\frac{1}{3}\right)^2=4\)

b,  \(B=\left(x+y-7\right)^2-2\left(x+y-7\right)\left(y-6\right)+\left(y-6\right)^2\)

        \(=\left[\left(x+y-7\right)-\left(y-6\right)\right]^2\)

        \(=\left(x-1\right)^2\)

        \(=\left(101-1\right)^2=10000\)

c, \(C=4x^2-20x+27\)

       \(=\left(2x\right)^2-2.2x.5+5^2+2\)

       \(=\left(2x-5\right)^2+2\)

       \(=\left(52,5.2-5\right)^2+2\)

        \(=100^2+2=10002\)

Bài này dễ mà chỉ dùng hằng đẳng thức thôi. Chúc bạn học tốt.

16 tháng 11 2017

uuuuuuuuuuuuuuuuuuuuuuuuuuuuuu

55555555555555555

666666666666666666666666666

88888888888888888888

16 tháng 8 2019

\(a,\frac{x+1}{x-2}+\frac{x-1}{x+2}=\frac{2\left(x^2+2\right)}{x^2-4}\)\(\Leftrightarrow\frac{x^2+3x+2+x^2-3x+2}{x^2-4}=\frac{2\left(x^2+2\right)}{x^2-4}\)

\(\Leftrightarrow2\left(x^2+2\right)=2\left(x^2+2\right)\)(luôn đúng)

Vậy pt có vô số nghiệm

\(b,\Leftrightarrow\left(2x+3\right)\left(\frac{3x+8}{2-7x}+1\right)=\left(x-5\right)\left(\frac{3x+8}{2-7x}+1\right)\)

\(\Leftrightarrow\left(\frac{3x+8}{2-7x}+1\right)\left(2x+3-x+5\right)=0\)\(\Leftrightarrow\left(\frac{-4x+10}{2-7x}\right)\left(x+8\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}-4x+10=0\\x+8=0\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{5}{2}\\x=-8\end{cases}}\)

Mấy câu rút gọn bạn quy đồng nha

16 tháng 8 2019

bạn có thể giải ra giúp mik đc ko?

a) Ta có: \(A=\left(x-1\right)^3-\left(x+1\right)^3\)

\(=\left[\left(x-1\right)-\left(x+1\right)\right]\cdot\left[\left(x-1\right)^2+\left(x-1\right)\left(x+1\right)+\left(x+1\right)^2\right]\)

\(=\left(x-1-x-1\right)\cdot\left(x^2-2x+1+x^2-1+x^2+2x+1\right)\)

\(=-2\cdot\left(3x^2+1\right)\)

\(=-6x^2-2\)

b) Ta có: \(B=\left(x+y\right)^3+\left(x-y\right)^3\)

\(=\left[\left(x+y\right)+\left(x-y\right)\right]\cdot\left[\left(x+y\right)^2-\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\right]\)

\(=\left(x+y+x-y\right)\left(x^2+2xy+y^2-x^2+y^2+x^2-2xy+y^2\right)\)

\(=2x\cdot\left(x^2+3y^2\right)\)

\(=2x^3+6xy^2\)

c) Ta có: \(C=\left(x-y\right)^3+3xy\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-2xy+y^2\right)+3xy\left(x-y\right)\)

\(=\left(x-y\right)\left(x^2-2xy+y^2+3xy\right)\)

\(=\left(x-y\right)\left(x^2+xy+y^2\right)\)

\(=x^3-y^3\)

d) Ta có: \(D=\left(x+1\right)^3-\left(x-3\right)^3-2\left(x^2+15\right)\left(x-3\right)\)

\(=x^3+3x^2+3x+1-\left(x^3-9x^2+27x-27\right)-2\left(x^3-3x^2+15x-45\right)\)

\(=x^3+3x^2+3x+1-x^3+9x^2-27x+27-2x^3+6x^2-30x+90\)

\(=-2x^3+18x^2-54x+118\)

10 tháng 9 2018

bạn vào loigiaihay rồi chọn toán lớp 8 rồi chọn đẳng thức đáng nhớ

10 tháng 9 2018

dễ mà áp dụng hết hằng đẳng thức nếu bạn thuộc hằng đẳng thức mik chỉ làm mỗi bài 1 ý nha xong dựa vô mà làm

\(1a.\left(2x+3y\right)^2=\left(2x\right)^2+2.2x.3y+\left(3y\right)^2\)

                                   \(=4y^2+12xy+9y^2\)

\(2a.x^2-6x+9\)

\(=x^2-2.x.3+3^2\)

\(=\left(x-3\right)^2\)

2 tháng 9 2017

X=2007 đúng 100%