K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2021

\(\left(2x-5\right)\left(2x+5\right)-\left(2x+1\right)^2=4x^2-25-4x^2-4x-1=-4x-25=\left(-4\right).\left(-2005\right)-26=8020-26=7994\)

14 tháng 1 2017

Ta có x-y=4

<=>(x-y)^2=16

<=>x^2-2xy+y^2=16

<=>x^2+y^2-2.5=16

<=>x^2+y^2-10=16

<=>x^2+y^2=26

<=>x^2+y^2+2xy=26+10

<=>(x+y)^2=36

<=>x+y=6 hoặc -6

14 tháng 1 2017

từ  x  - y = 4   suy ra y = x - 4 
thay vào xy=5 suy ra x(x-4)=5 
suy ra x^2-4x+4=9 
suy ra (x-2)^2=9 
suy ra x-2=+-3 
vi x<0 suy ra x=-3+2=-1 
suy ra y=x-4=-1-4=-5 
suy ra x+y=-1+-5=-6

11 tháng 2 2017

\(P=\frac{2x^5-x^4-2x+1}{4x^2-1}+\frac{8x^2-4x+2}{8x^3+1}\)

\(=\frac{x^4\left(2x-1\right)-\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{\left(x^4-1\right)\left(2x-1\right)}{\left(2x-1\right)\left(2x+1\right)}+\frac{2\left(4x^2-2x+1\right)}{\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{\left(x^4-1\right)\left(2x-1\right)\left(4x^2-2x+1\right)+2\left(2x-1\right)\left(4x^2+2x+1\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{\left(2x-1\right)\left(4x^2-2x+1\right)\left(x^4-1+2\right)}{\left(2x-1\right)\left(2x+1\right)\left(4x^2-2x+1\right)}\)

\(=\frac{x^4+1}{2x+1}\)

12 tháng 2 2017

bạn ơi tìm các giá trị của x sau khi bạn đã rút gọn í cái đề mk đăng lên là dậy đó tìm x khi P = 6 đó!

22 tháng 6 2017

\(\frac{x^4-x^3-x+1}{x^4+x^3+3x^2+2x+2}\)
\(=\frac{x^3\left(x-1\right)-\left(x-1\right)}{x^4+x^3+x^2+2x^2+2x+2}\)
\(=\frac{\left(x-1\right)\left(x^3-1\right)}{x^2\left(x^2+x+1\right)+2\left(x^2+x+1\right)}\)
\(=\frac{\left(x-1\right)\left(x-1\right)\left(x^2+x+1\right)}{\left(x^2+x+1\right)\left(x^2+2\right)}\)
\(=\frac{\left(x-1\right)^2}{\left(x^2+2\right)}\)

9 tháng 6 2021

a)Đk:\(\left\{{}\begin{matrix}x^2-4\ne0\\2x^2-x^3\ne0\\x^2-3x\ne0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-2\right)\left(x+2\right)\ne0\\x^2\left(2-x\right)\ne0\\x\left(x-3\right)\ne0\end{matrix}\right.\)\(\Leftrightarrow x\ne\left\{2;-2;0;3\right\}\)

b)\(P=\left[\dfrac{\left(2+x\right)^2}{\left(2+x\right)\left(2-x\right)}+\dfrac{4x^2}{\left(x-2\right)\left(x+2\right)}-\dfrac{\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}\right]:\dfrac{x\left(x-3\right)}{x^2\left(2-x\right)}\)

\(=\dfrac{\left(2+x\right)^2-4x^2-\left(2-x\right)^2}{\left(2+x\right)\left(2-x\right)}.\dfrac{x^2\left(2-x\right)}{x\left(x-3\right)}\)

\(=\dfrac{4+4x+x^2-4x^2-4+4x-x^2}{\left(2+x\right)\left(2-x\right)}.\dfrac{x\left(2-x\right)}{x-3}\)

\(=\dfrac{x\left(8x-4x^2\right)}{\left(2+x\right)\left(x-3\right)}\) (sai đề chỗ nào ko em)

c)\(\left|x-5\right|=2\Leftrightarrow\left[{}\begin{matrix}x-5=2\\x-5=-2\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=7\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)

Thay x=7 vào bt P ta được: \(P=\dfrac{7\left(8.7-4.7^2\right)}{\left(2+7\right)\left(7-3\right)}=-\dfrac{245}{9}\)

15 tháng 1 2018

Hỏi đáp ToánHỏi đáp Toán

8 tháng 12 2021

ĐK: \(3x\ne\pm y;x\ne0\)

A = \(\dfrac{3x}{3x+y}-\dfrac{x}{3x-y}+\dfrac{2x}{\left(3x-y\right)\left(3x+y\right)}\)

\(\dfrac{3x\left(3x-y\right)-x\left(3x+y\right)+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{6x^2-4xy+2x}{\left(3x-y\right)\left(3x+y\right)}=\dfrac{2x\left(3x-2y+1\right)}{\left(3x-y\right)\left(3x+y\right)}\)

Thay x = 1; y=2, ta có:

A = \(\dfrac{2.1\left(3.1-2.2+1\right)}{\left(3.1-2\right)\left(3.1+2\right)}=0\)

9 tháng 12 2021

\(A=\dfrac{2x^2\left(3x-4y+2\right)}{x\left(3x+y\right)\left(3x-y\right)}=\dfrac{2x\left(3x-4y+2\right)}{\left(3x+y\right)\left(3x-y\right)}\\ A=\dfrac{2\left(3-8+2\right)}{\left(3+2\right)\left(3-2\right)}=\dfrac{2\left(-3\right)}{5}=\dfrac{-6}{5}\)

4 tháng 3 2020

a) Ta có : 

\(3x=3\left(x+2\right)\)

\(\Leftrightarrow3x=3x+2\)

\(\Leftrightarrow0=2\) ( vô lí )

Do đó pt đã cho vô nghiệm

b) Ta có  \(\left|x\right|=-x^2-2\) (1)

Nhân xét : VT (1) : \(\left|x\right|\ge0\forall x\)

VP (1) : \(-x^2\le0\Leftrightarrow-x^2-2\le-2\forall x\)

Do đó : \(VT\ne VP\)

Vì vậy pt đã cho vô nghiệm