K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 12 2015

\(=\left(\frac{\sqrt{a}+a+\sqrt{a}-a}{1-a}\right)\div\frac{\sqrt{a}}{a-1}\)

\(=\frac{2\sqrt{a}}{1-a}\div\frac{\sqrt{a}}{a-1}\)

\(=\frac{2\sqrt{a}}{\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)}.\frac{\left(\sqrt{a}-1\right)\left(\sqrt{a}+1\right)}{\sqrt{a}}\)

\(=\frac{2\left(\sqrt{a}-1\right)}{\left(1-\sqrt{a}\right)}\)\(=-2\)

\(Với:a>0;a\ne0\)

12 tháng 12 2015

Rút gọn \(C=-2\)

TICK NHA BẠN

6 tháng 10 2018

Ai giải giúp mình bài 1 với bài 4 trước đi

a)\(P=\left(\frac{1}{a-\sqrt{a}}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}-1}{a-2\sqrt{a}+1}\)

\(P=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{1}{\sqrt{a}-1}\right):\frac{\sqrt{a}-1}{a-2\sqrt{a}+1}\)

\(P=\left(\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}+\frac{\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{\sqrt{a}-1}{\left(\sqrt{a}-1\right)^2}\)

\(P=\left(\frac{1+\sqrt{a}}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\frac{1}{\left(\sqrt{a}-1\right)}\)

\(P=\frac{\sqrt{a}+1}{\sqrt{a}}\)

b) Để \(P=\frac{1}{4}\Leftrightarrow\frac{\sqrt{a}+1}{\sqrt{a}}=\frac{1}{4}\)

\(\Rightarrow4\left(\sqrt{a}+1\right)=\sqrt{a}\)

\(\Leftrightarrow3\sqrt{a}+1=0\)

<=> a ko có giá trị

P/s tha m khảo nha

28 tháng 5 2021

c,\(\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{1-a}{\sqrt{1-a^2}-1+a}\right)\left(\sqrt{\frac{1}{a^2}-1}-\frac{1}{a}\right)\)

\(=\left(\frac{\sqrt{1+a}}{\sqrt{1+a}-\sqrt{1-a}}+\frac{\sqrt{1-a}.\sqrt{1-a}}{\sqrt{1-a}\left(\sqrt{1+a}-\sqrt{1-a}\right)}\right)\left(\frac{\sqrt{1-a^2}-1}{a}\right)\)

\(=\frac{\left(\sqrt{1+a}+\sqrt{1-a}\right)^2}{\left(1+a\right)-\left(1-a\right)}.\frac{\left(\sqrt{1-a^2}-1\right)}{a}=-1\)

28 tháng 5 2021

M chỉ làm tiếp thôi nha, ko chép lại đề với đk đâu

a,

\(=\frac{a+2\sqrt{ab}+b-4\sqrt{ab}}{\sqrt{a}-\sqrt{b}}-\)\(\frac{\sqrt{ab}\left(\sqrt{a}-\sqrt{b}\right)}{\sqrt{ab}}\)

\(=\frac{a-2\sqrt{ab}+b}{\sqrt{a}-\sqrt{b}}-\left(\sqrt{a}-\sqrt{b}\right)\)

\(=\frac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\sqrt{a}-\sqrt{b}}-\sqrt{a}+\sqrt{b}\)

\(=\sqrt{a}-\sqrt{b}-\sqrt{a}+\sqrt{b}\)

\(=0\)

b,

\(=\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}+1\right)\)

\(=\left(a-b\right)^2\left(\frac{a+b}{a-b}-1\right)\)

\(=\left(a-b\right)^2\cdot\frac{a+b-a+b}{a-b}\)

\(=\left(a-b\right)2b=2ab-2b^2\)

1 tháng 10 2017

Ta có: a√a = √(a².a) = (√a)³ 
=> 1 - a√a = 1 - (√a)³ = (1 - √a)(a + √a + 1) (1) 
Tương tự: 1 + a√a = 1 + (√a)³ = (1 + √a)(a - √a + 1) (2) 
Từ (1) và (2) => [ (1-a√a/1-√a+√a).(1+a√a/1+√a-√a) + 1 ]. 
= [(1 - √a)(a + √a + 1)/(1 - √a) + √a].[(1 + √a)(a - √a + 1)/(1 + √a) - √a ] +1 
=(a + √a + 1 + √a)(a - √a + 1- √a) + 1 
= (a + 2√a + 1)(a - 2√a + 1) + 1 
= (√a + 1)²(√a - 1)² +1 
= [(√a + 1)(√a - 1)]² + 1 
= (a - 1)² + 1 
= a² - 2a + 1 + 1 
= a² - 2a + 2 
=> [ (1-a√a/1-√a+√a).(1+a√a/1+√a-√a) + 1 ] = a² - 2a + 2 (3) 
Áp dụng (3) vào A ta được A = [(1 - a)²]/(a² - 2a + 2) 
<=> A = (a² - 2a + 1)/(a² - 2a + 2) 

12 tháng 7 2016

\(A=\left[\frac{1}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{1}{\sqrt{x}+1}\right]\div\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)^2}\)

\(A=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+1\right)}\times\frac{\left(\sqrt{x}+1\right)^2}{\sqrt{x}-1}\)

\(A=\frac{-\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}{\sqrt{x}\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\)

\(A=\frac{-\left(\sqrt{x}+1\right)}{\sqrt{x}}=\frac{-\sqrt{x}-x}{x}\)