Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\Leftrightarrow A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2+\sqrt{5}\right)\left(2-\sqrt{5}\right)}\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\Leftrightarrow A^3=4+3\sqrt[3]{-1}.A\Leftrightarrow A^3=4-3A\Leftrightarrow A^3+3A-4=0\Leftrightarrow\left(A-1\right)\left(A^2+A+4\right)=0\)(1)
Ta có \(A^2+A+4>0\)
Vậy (1)\(\Leftrightarrow A-1=0\Leftrightarrow A=1\)
Vậy A=1
\(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\Leftrightarrow B^3=5\sqrt{2}+7-5\sqrt{2}+7-3\sqrt[3]{\left(5\sqrt{2}+7\right)\left(5\sqrt{2}-7\right)}\left(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\right)\Leftrightarrow B^3=14-3\sqrt[3]{1}.B\Leftrightarrow B^3=14-3B\Leftrightarrow B^3+3B-14=0\Leftrightarrow\left(B-2\right)\left(B^2+2B+7\right)=0\left(2\right)\)
Ta lại có \(B^2+2B+7>0\)
Vậy (2)\(\Leftrightarrow B-2=0\Leftrightarrow B=2\)
Vậy B=2
\(C=\sqrt[3]{20+14\sqrt{2}}-\sqrt[3]{14\sqrt{2}-20}=\sqrt[3]{\left(\sqrt{2}\right)^3+3.\left(\sqrt{2}\right)^2.2+3.\sqrt{2}.4+8}-\sqrt[3]{\left(\sqrt{2}\right)^3-3.\left(\sqrt{2}\right)^2.2+3.\sqrt{2}.4-8}=\sqrt[3]{\left(\sqrt{2}+2\right)^2}-\sqrt[3]{\left(\sqrt{2}-2\right)}=\sqrt{2}+2-\sqrt{2}+2=4\)
cau a,b,c thay no co chung 1 dang do la
\(\sqrt[3]{a+m}+\sqrt[3]{a-m}\)
dang nay co 2 cach
C1: nhanh kho nhin de sai
VD: cau B
\(B^3=40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}\left(B\right)\)
B^3=40+3(2)(B)
B^3=40+6B
B=4
C2: hoi dai nhung de nhin
dat \(a=\sqrt[3]{20+14\sqrt{2}};b=\sqrt[3]{20-14\sqrt{2}}\)
de thay B=a+b
ab=2
a^3+b^3=40
suy ra B^3=a^3+b^3+3ab(a+b)
B^3=40+6B
B=4
giai tuong tu
con co cach nay nhung it su dung vi kho tim
C3: dua ve tong lap phuong
VD:cau B
\(20+14\sqrt{2}=\left(2+\sqrt{2}\right)^3\)
\(20-14\sqrt{2}=\left(2-\sqrt{2}\right)^3\)
de thay
B=4
cau d)
dung CT nay
\(\sqrt[m]{a}=\sqrt[m\cdot n]{\left(a\right)^n}\)
ap dung vao bai
\(\sqrt[3]{2\sqrt{3}-4\sqrt{2}}=\sqrt[6]{\left(2\sqrt{3}-4\sqrt{2}\right)^2}=\sqrt[6]{44-16\sqrt{6}}\)
nhanh vao
\(\sqrt[6]{\left(44-16\sqrt{6}\right)\left(44+16\sqrt{6}\right)}=\sqrt[6]{400}=\sqrt[3]{20}\)
a: \(A=\sqrt[3]{9+4\sqrt{5}}+\sqrt[3]{9-4\sqrt{5}}\)
\(\Leftrightarrow A^3=9+4\sqrt{5}+9-4\sqrt{5}+3\cdot A\)
=>A^3-3A-18=0
=>A=3
b: \(B=\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}\)
=>\(B^3=5\sqrt{2}+7-5\sqrt{2}+7+3B\)
=>B^3-3B-14=0
=>B=2,82
c: \(C^3=20+14\sqrt{2}-14\sqrt{2}+20-6C\)
=>C^3+6C-40=0
=>C=2,84
Câu b, c tương tự câu a. Mình làm câu a coi như tượng trưng nha !!!!!!
a) Đặt: \(A=\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\)
<=> \(A^3=2+\sqrt{5}+2-\sqrt{5}+3\sqrt[3]{\left(2-\sqrt{5}\right)\left(2+\sqrt{5}\right)}.\left(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}\right)\)
<=> \(A^3=4+3\sqrt[3]{4-5}.A\)
<=> \(A^3=4-3A\)
<=> \(A^3+3A-4=0\)
<=> \(\left(A-1\right)\left(A^2+A+4\right)=0\)
Có: \(A^2+A+4=\left(A+\frac{1}{2}\right)^2+\frac{15}{4}\ge\frac{15}{4}>0\)
=> \(A-1=0\)
<=> \(A=1\)
=> \(\sqrt[3]{2+\sqrt{5}}+\sqrt[3]{2-\sqrt{5}}=1\)
VẬY TA CÓ ĐPCM
g, h. Câu hỏi của Nữ hoàng sến súa là ta - Toán lớp 9 - Học toán với OnlineMath
\(A=\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=\sqrt[3]{2^3+3.2^2.\sqrt{2}+3.2.\left(\sqrt{2}\right)^2+\left(\sqrt{2}\right)^3}+\sqrt[3]{2^3-3.2^2.\sqrt{2}+3.2.\left(\sqrt{2}\right)^2-\left(\sqrt{2}\right)^3}\)\(=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}=2+\sqrt{2}+2-\sqrt{2}=4.\)
Áp dụng hằng đẳng thức (a+b)3 = a3 + 3a2b + 3ab2 + b3 = a3 + b3 + 3ab.(a +b) ta có:
\(B^3=20+14\sqrt{2}+20-14\sqrt{2}+3\sqrt[3]{20+14\sqrt{2}}.\sqrt[3]{20-14\sqrt{2}}\left(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}\right)\)
\(B^3=40+3\sqrt[3]{\left(20+14\sqrt{2}\right)\left(20-14\sqrt{2}\right)}.B\)
\(B^3=40+3.\sqrt[3]{400-392}.B=40+3.\sqrt[3]{8}.B=40+6B\)
=> B3 - 6B - 40 = 0
<=> B3 - 64 - 6B + 24 = 0
<=> (B - 4 ).(B2 + 4B + 16) - 6.(B - 4) = 0
<=> (B - 4).(B2 + 4B + 16 - 6) = 0 <=> B = 4 hoặc B2 + 4B + 10 = 0
B2 + 4B + 10 = 0 Vô nghiêm vì \(\Delta\) = 16 - 40 = -24 < 0
Vậy B = 4