K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 6 2019

Ứng dụng giải toán đã được review rất hay bởi trang báo uy tín https://www.facebook.com/docbaoonlinethayban/videos/467035000526358/?v=467035000526358 Cả nhà tải ngay bằng link dưới đây nhé. https://giaingay.com.vn/downapp.html

18 tháng 6 2019

Đề thi thử + tính điểm với những đề mới nhất cả nhà tải app dùng thử nhé https://giaingay.com.vn/downapp.html

23 tháng 8 2023

a) \(15\sqrt{\dfrac{4}{3}}-5\sqrt{48}+2\sqrt{12}-6\sqrt{\dfrac{1}{3}}\)

\(=\sqrt{15^2\cdot\dfrac{4}{3}}-5\cdot4\sqrt{3}+2\cdot2\sqrt{3}-\sqrt{6^2\cdot\dfrac{1}{3}}\)

\(=\sqrt{\dfrac{225\cdot4}{3}}-20\sqrt{3}+4\sqrt{3}-\sqrt{\dfrac{36}{3}}\)

\(=\sqrt{75\cdot4}-16\sqrt{3}-\sqrt{12}\)

\(=10\sqrt{3}-16\sqrt{3}-2\sqrt{3}\)

\(=-8\sqrt{3}\)

b) \(\dfrac{15}{\sqrt{6}+1}-\dfrac{3}{\sqrt{7}-\sqrt{2}}-15\sqrt{6}+3\sqrt{7}\)

\(=\dfrac{15\left(\sqrt{6}-1\right)}{\left(\sqrt{6}+1\right)\left(\sqrt{6}-1\right)}-\dfrac{3\left(\sqrt{7}+\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}-15\sqrt{6}+3\sqrt{7}\)

\(=\dfrac{15\left(\sqrt{6}-1\right)}{6-1}-\dfrac{3\sqrt{7}+3\sqrt{2}}{7-2}-15\sqrt{6}+3\sqrt{7}\)

\(=3\left(\sqrt{6}-1\right)-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)

\(=3\sqrt{6}-3-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}-15\sqrt{6}+3\sqrt{7}\)

\(=-12\sqrt{6}-3+3\sqrt{7}-\dfrac{3\sqrt{7}+3\sqrt{2}}{5}\)

\(=\dfrac{-60\sqrt{6}-15+15\sqrt{7}-3\sqrt{7}-3\sqrt{2}}{5}\)

\(=\dfrac{-60\sqrt{6}-15+12\sqrt{7}-3\sqrt{2}}{5}\)

a: Ta có: \(4\sqrt{3a}-3\sqrt{12a}+\dfrac{6\sqrt{a}}{3}-2\sqrt{20a}\)

\(=4\sqrt{3a}-6\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)

\(=-2\sqrt{3a}+2\sqrt{2a}-4\sqrt{5a}\)

12 tháng 7 2018

Bài 1:

a)  \(B=\sqrt{1-4x+4x^2}\)

         \(=\sqrt{\left(1-2x\right)^2}\)

         \(=\left|1-2x\right|\)

Nếu  \(x\le\frac{1}{2}\)thì:  \(B=1-2x\)

Nếu  \(x>\frac{1}{2}\)thì:  \(B=2x-1\)

b)  Tại \(x=-7\)thì:  \(B=1-2.\left(-7\right)=15\)

12 tháng 7 2018

Bài 2:

\(\sqrt{7+4\sqrt{3}}+\sqrt{7-4\sqrt{3}}\)

\(=\sqrt{\left(\sqrt{3}\right)^2+2.\sqrt{3}.2+2^2}+\sqrt{2^2-2.2.\sqrt{3}+\left(\sqrt{3}\right)^2}\)

\(=\sqrt{\left(\sqrt{3}+2\right)^2}+\sqrt{\left(2-\sqrt{3}\right)^2}\)

\(=\sqrt{3}+2+2-\sqrt{3}=4\) (đpcm)

23 tháng 8 2023

a) \(6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9x-9}+\dfrac{7}{2}\sqrt{4x-4}=24\) (ĐK: \(x\ge1\)

\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot\sqrt{9\left(x-1\right)}+\dfrac{7}{2}\sqrt{4\left(x-1\right)}=24\)

\(\Leftrightarrow6\sqrt{x-1}-\dfrac{1}{3}\cdot3\sqrt{x-1}+\dfrac{7}{2}\cdot2\sqrt{x-1}=24\)

\(\Leftrightarrow6\sqrt{x-1}-\sqrt{x-1}+7\sqrt{x-1}=24\)

\(\Leftrightarrow12\sqrt{x-1}=24\)

\(\Leftrightarrow\sqrt{x-1}=\dfrac{24}{12}\)

\(\Leftrightarrow\sqrt{x-1}=2\)

\(\Leftrightarrow x-1=4\)

\(\Leftrightarrow x=4+1\)

\(\Leftrightarrow x=5\left(tm\right)\)

b) \(\dfrac{1}{2}\sqrt{4x+8}-2\sqrt{x+2}-\dfrac{3}{7}\sqrt{49x+98}=-8\) (ĐK: \(x\ge-2\))

\(\Leftrightarrow\dfrac{1}{2}\cdot2\sqrt{x+2}-2\sqrt{x+2}-\dfrac{3}{7}\cdot7\sqrt{x+2}=-8\)

\(\Leftrightarrow\sqrt{x+2}-2\sqrt{x+2}-3\sqrt{x+2}=-8\)

\(\Leftrightarrow-4\sqrt{x+2}=-8\)

\(\Leftrightarrow\sqrt{x+2}=\dfrac{-8}{-4}\)

\(\Leftrightarrow\sqrt{x+2}=2\)

\(\Leftrightarrow x+2=4\)

\(\Leftrightarrow x=4-2\)

\(\Leftrightarrow x=2\left(tm\right)\)

15 tháng 8 2021

có bộ gõ kí hiệu Toán mà :))

ĐK : a >= 0 ; a khác 36

\(K=\left[\frac{a+14\sqrt{a}+100}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}+\frac{\left(\sqrt{a}+6\right)\left(\sqrt{a}-6\right)}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}-\frac{\left(\sqrt{a}-7\right)\left(\sqrt{a}+7\right)}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}\right]\div\left(\frac{\sqrt{a}-6}{\sqrt{a}-6}-\frac{\sqrt{a}-7}{\sqrt{a}-6}\right)\)

\(=\frac{a+14\sqrt{a}+100+a-36-a+49}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}\div\frac{1}{\sqrt{a}-6}\)

\(=\frac{a+14\sqrt{a}+113}{\left(\sqrt{a}-6\right)\left(\sqrt{a}+7\right)}\cdot\left(\sqrt{a}-6\right)=\frac{a+14\sqrt{a}+113}{\sqrt{a}+7}\)

Để K = 2 thì \(\frac{a+14\sqrt{a}+113}{\sqrt{a}+7}=2\Rightarrow a+14\sqrt{a}+113=2\sqrt{a}+14\Leftrightarrow a+12\sqrt{a}+99=0\)

Với a >= 0 thì \(a+12\sqrt{a}+99\ge99>0\)=> Không có giá trị x thỏa mãn K = 2

Ta có : \(K=\frac{a+14\sqrt{a}+113}{\sqrt{a}+7}=\frac{\left(a+14\sqrt{a}+49\right)+64}{\sqrt{a}+7}=\frac{\left(\sqrt{a}+7\right)^2+64}{\sqrt{a}+7}\)

\(=\left(\sqrt{a}+7\right)+\frac{64}{\sqrt{a}+7}\ge2\sqrt{\left(\sqrt{a}+7\right)\cdot\frac{64}{\sqrt{a}+7}}=16\)( bđt AM-GM )

Dấu "=" xảy ra <=> \(\sqrt{a}+7=\frac{64}{\sqrt{a}+7}\Rightarrow a=1\left(tm\right)\). Vậy MinK = 16

15 tháng 11 2022

a: \(=9\sqrt{2}-4\sqrt{2}+4\sqrt{2}+9\sqrt{2}=18\sqrt{2}\)

b: \(=8\sqrt{3}-12\sqrt{3}+5\sqrt{3}+2\sqrt{3}=3\sqrt{3}\)

c: \(=2\sqrt{21}\)