Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, ĐỂ \(\frac{2x+4}{x\left(x+2\right)}\)xác định
\(\Rightarrow\hept{\begin{cases}x\ne0\\x+2\ne0\end{cases}}\Rightarrow\hept{\begin{cases}x\ne0\\x\ne-2\end{cases}}\)
a) \(ĐKXĐ:x\ne1\)
b) \(\left(\frac{1}{x-1}-\frac{2x}{x^3+x-x^2-1}\right):\left(1-\frac{2x}{x^2+1}\right)\)
\(=\left(\frac{1}{x-1}-\frac{2x}{x\left(x^2+1\right)-\left(x^2+1\right)}\right):\frac{x^2+1-2x}{x^2+1}\)
\(=\left(\frac{1}{x-1}-\frac{2x}{\left(x^2+1\right)\left(x-1\right)}\right):\frac{\left(x-1\right)^2}{x^2+1}\)
\(=\frac{x^2+1-2x}{\left(x-1\right)\left(x^2+1\right)}.\frac{x^2+1}{\left(x-1\right)^2}\)
\(=\frac{\left(x-1\right)^2}{\left(x-1\right)^3}\)
\(=\frac{1}{x-1}\)
c) Với \(\forall x\)(\(x\ne1\)) thì biểu thức được xác định .
P/s : Theo mik câu c nên chuyển thành : Tìm x để biểu thức đạt giá trị nguyên.
Tại thấy câu c k khác j câu a !
a)\(\hept{\begin{cases}x+1\ne0\\2x-6\ne0\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ne-1\\x\ne3\end{cases}}\)
b)\(\frac{3x^2+3x}{\left(x+1\right)\left(2x-6\right)}=10\)\(\Leftrightarrow\frac{3x\left(x+1\right)}{\left(x+1\right)\left(2x-6\right)}=10\)
\(\Leftrightarrow\frac{3x}{2x-6}=10\)\(\Leftrightarrow3x=10\left(2x-6\right)\)
\(\Leftrightarrow3x=20x-60\)\(\Leftrightarrow17x=60\Leftrightarrow x=\frac{60}{17}\)
a,ĐK: \(\hept{\begin{cases}x\ne0\\x\ne\pm3\end{cases}}\)
b, \(A=\left(\frac{9}{x\left(x-3\right)\left(x+3\right)}+\frac{1}{x+3}\right):\left(\frac{x-3}{x\left(x+3\right)}-\frac{x}{3\left(x+3\right)}\right)\)
\(=\frac{9+x\left(x-3\right)}{x\left(x-3\right)\left(x+3\right)}:\frac{3\left(x-3\right)-x^2}{3x\left(x+3\right)}\)
\(=\frac{x^2-3x+9}{x\left(x-3\right)\left(x+3\right)}.\frac{3x\left(x+3\right)}{-x^2+3x-9}=\frac{-3}{x-3}\)
c, Với x = 4 thỏa mãn ĐKXĐ thì
\(A=\frac{-3}{4-3}=-3\)
d, \(A\in Z\Rightarrow-3⋮\left(x-3\right)\)
\(\Rightarrow x-3\inƯ\left(-3\right)=\left\{-3;-1;1;3\right\}\Rightarrow x\in\left\{0;2;4;6\right\}\)
Mà \(x\ne0\Rightarrow x\in\left\{2;4;6\right\}\)
a )\(\left[\begin{array}{nghiempt}x+1\ne0\\2x-3\ne0\end{array}\right.\)
\(ĐKXĐ:x\ne-1,x\ne\frac{3}{2}\)
b ) \(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)
Để \(A=3\) thì :
\(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=-\frac{3}{2}\)
Chúc bạn học tốt
a) ĐKXĐ:\(x\ne-1,x\ne\frac{3}{2}\)
b)\(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{x\left(2x-3\right)}{\left(x+1\right)\left(2x-3\right)}=\frac{x}{x+1}\)
để A = 3 thì \(\frac{x}{x+1}=3\Leftrightarrow x=3x+3\Leftrightarrow x-3x=3\Leftrightarrow-2x=3\Leftrightarrow x=\frac{-3}{2}\)
DKXD : \(x+1\ne0\Rightarrow x\ne-1,2x-3\ne0\Rightarrow2x\ne3\Rightarrow x\ne\frac{3}{2}\)
\(A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=3\Rightarrow A==\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{3.\left(\left(x+1\right)\left(2x-3\right)\right)}{\left(x+1\right)\left(2x-3\right)}\)
\(\Rightarrow A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{3.\left(2x^2-3x-2x+3\right)}{\left(x+1\right)\left(2x-3\right)}\Rightarrow A=\frac{2x^2-3x}{\left(x+1\right)\left(2x-3\right)}=\frac{6x^2-9x-6x+9}{\left(x+1\right)\left(2x-3\right)}\)\(\Rightarrow A=2x^2-3x=6x^2-15x+9\Rightarrow A=0=4x^2-12x+9\Rightarrow A=0=\left(2x-3\right)^2\)
\(\Rightarrow2x-3=0\Rightarrow x=\frac{3}{2}\left(TMDKXD\right)\)
t i c k cho mình 1 cái nha mình bị trừ 50đ ùi hic hic ủng hộ nhé
ĐKXĐ : \(\hept{\begin{cases}2x+10\ne0\\x\ne0\\2x\left(x+5\right)\ne0\end{cases}\Rightarrow x\ne0;x\ne-2\left(1\right)}\)
Ta có P = \(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^2+2x}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50+5x}{2x\left(x+5\right)}=\frac{x^3+4x^2+5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x+5\right)}{2x\left(x+5\right)}\)
\(=\frac{x^2+4x+5}{2\left(x+5\right)}\)
c) P = 1
<=> \(\frac{x^2+4x+5}{2\left(x+5\right)}=1\Rightarrow x^2+4x+5=2\left(x+5\right)\)
=> x2 + 4x + 5 - 2x - 10 = 0
=> x2 + 2x - 5 = 0
=> x2 + 2x + 1 - 6 = 0
=> (x + 1)2 = 6
=> \(\orbr{\begin{cases}x+1=\sqrt{6}\\x+1=-\sqrt{6}\end{cases}}\Rightarrow\orbr{\begin{cases}x=\sqrt{6}-1\\x=-\sqrt{6}-1\end{cases}}\)(tm (1))
d) P = -1/2
<=> \(\frac{x^2+4x+5}{2\left(x+5\right)}=-\frac{1}{2}\)
=> 2(x2 + 4x + 5) = -2(x + 5)
=> 2x2 + 8x + 10 = -2x - 10
=> 2x2 + 8x + 10 + 2x + 10 = 0
=> 2x2 + 10x + 20 = 0
=> 2(x2 + 5x + 10) = 0
=> x2 + 5x + 10 = 0
=> \(x^2+2.\frac{5}{2}x+\frac{25}{4}+\frac{15}{4}=0\)
=> \(\left(x+\frac{5}{2}\right)^2+\frac{15}{4}=0\)
=> \(x\in\varnothing\left(\text{Vì }\left(x+\frac{5}{2}\right)^2+\frac{15}{4}>0\forall x\right)\)
Vậy không tồn tại x để P = -1/2
\(P=\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
a) ĐK : x ≠ 0 ; x ≠ -5
b) \(P=\frac{x\left(x+2\right)}{2\left(x+5\right)}+\frac{x-5}{x}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^2\left(x+2\right)}{2x\left(x+5\right)}+\frac{2\left(x-5\right)\left(x+5\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2}{2x\left(x+5\right)}+\frac{2\left(x^2-25\right)}{2x\left(x+5\right)}+\frac{50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50+5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2+5x}{2x\left(x+5\right)}=\frac{x\left(x^2+4x+5\right)}{2x\left(x+5\right)}\)
\(=\frac{x^2+4x+5}{2x+10}\)
c) Để P = 1
thì \(\frac{x^2+4x+5}{2x+10}=1\)
=> x2 + 4x + 5 = 2x + 10
=> x2 + 4x + 5 - 2x - 10 = 0
=> x2 - 2x - 5 = 0
=> ( x2 - 2x + 1 ) - 6 = 0
=> ( x - 1 )2 - ( √6 )2 = 0
=> ( x - 1 - √6 )( x - 1 + √6 ) = 0
=> x = 1 + √6 hoặc x = 1 - √6
Cả hai giá trị đều thỏa x ≠ 0 ; x ≠ -5
Vậy x = 1 + √6 hoặc x = 1 - √6
d) Để P = -1/2
thì \(\frac{x^2+4x+5}{2x+10}=\frac{-1}{2}\)
=> 2( x2 + 4x + 5 ) = -2x - 10
=> 2x2 + 8x + 10 + 2x + 10 = 0
=> 2x2 + 10x + 20 = 0
=> 2( x2 + 5x + 10 ) = 0
=> x2 + 5x + 10 = 0 (*)
Ta có : x2 + 5x + 10 = ( x2 + 5x + 25/4 ) + 15/4 = ( x + 5/2 )2 + 15/4 ≥ 15/4 > 0 ∀ x
tức (*) không xảy ra
Vậy không có giá trị của x để P = -1/2
a) ĐKXĐ:
\(x^2-1\ne0\Leftrightarrow x\ne\pm1\)
b) \(A=\dfrac{x^2-2x+1}{x^2-1}\)
\(A=\dfrac{x^2-2\cdot x\cdot1+1^2}{x^2-1^2}\)
\(A=\dfrac{\left(x-1\right)^2}{\left(x+1\right)\left(x-1\right)}\)
\(A=\dfrac{x-1}{x+1}\)
c) Thay x = 3 vào A ta có:
\(A=\dfrac{3-1}{3+1}=\dfrac{2}{4}=\dfrac{1}{2}\)
a) ĐKXĐ:
\(9x^2-y^2\ne0\Leftrightarrow\left(3x\right)^2-y^2\ne0\Leftrightarrow\left(3x-y\right)\left(3x+y\right)\ne0\)
\(\Leftrightarrow3x\ne\pm y\)
b) \(B=\dfrac{6x-2y}{9x^2-y^2}\)
\(B=\dfrac{2\cdot3x-2y}{\left(3x\right)^2-y^2}\)
\(B=\dfrac{2\left(3x-y\right)}{\left(3x+y\right)\left(3x-y\right)}\)
\(B=\dfrac{2}{3x+y}\)
Thay x = 1 và \(y=\dfrac{1}{2}\) và B ta có:
\(B=\dfrac{2}{3\cdot1+\dfrac{1}{2}}=\dfrac{2}{3+\dfrac{1}{2}}=\dfrac{2}{\dfrac{7}{2}}=\dfrac{4}{7}\)
\(x\ne-2\)