Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\frac{3m-6n}{10n-5m}\)
\(=\frac{-3\left(2n-m\right)}{5\left(2n-m\right)}=\frac{-3}{5}\)
b) \(\frac{y^3+y^2+4y+4}{y^2+2y-8}\)
\(=\frac{y^2\left(y+1\right)+4\left(y+1\right)}{y^2+2y+1-9}\)
\(=\frac{\left(y^2+4\right)\left(y+1\right)}{\left(y+1\right)^2-9}\)
\(=\frac{\left(y^2+4\right)\left(y+1\right)}{\left(y-2\right)\left(y+4\right)}\)
c) \(\frac{x^2-xy-xz+yz}{x^2+xy-xz-yz}\)
\(=\frac{x\left(x-y\right)-z\left(x-y\right)}{x\left(x+y\right)-z\left(x+y\right)}\)
\(=\frac{\left(x-z\right)\left(x-y\right)}{\left(x-z\right)\left(x+y\right)}\)
\(=\frac{x-y}{x+y}\)
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)
\(\frac{\left(x-1\right)^3}{x^2y-xy-x+1}=\frac{\left(x-1\right)^3}{xy\left(x-1\right)-\left(x-1\right)}=\frac{\left(x-1\right)^3}{\left(xy-1\right)\left(x-1\right)}=\frac{\left(x-1\right)^2}{xy-1}=\frac{x^2-2x+1}{xy-1}\)
Ta có :
\(\frac{6x^2y^2}{8xy^5}=\frac{3x}{4y^3}\)
\(\frac{x^2-xy}{5xy-5y^2}=\frac{x\left(x-y\right)}{5y\left(x-y\right)}=\frac{x}{5y}\)
Hok tốt !
\(\frac{xy^3-x^2y}{x^2+xy}=\frac{xy\left(y^2-x\right)}{x\left(x+y\right)}=\frac{y\left(y^2-x\right)}{x+y}=\frac{y^3-xy}{x+y}\)