K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 1 2020

A=\(\frac{x^3-7x+6}{x^3+5x^2-2x-24}\)=\(\frac{x^3-2x^2+2x^2-4x-3x+6}{x^3-2x^2+7x^2-14x+12x-24}\)=\(\frac{x^2\left(x-2\right)+2x\left(x-2\right)-3\left(x-2\right)}{x^2\left(x-2\right)+7x\left(x-2\right)+12\left(x-2\right)}\)=\(\frac{\left(x-2\right)\left(x^2+2x-3\right)}{\left(x-2\right)\left(x^2+7x+12^{^{^{^{^{^{^{^{^{ }}}}}}}}}\right)}\)=\(\frac{\left(x-2\right)\left(x^2-x+3x-3\right)}{\left(x-2\right)\left(x^2+3x+4x+12\right)}\)=\(\frac{\left(x-2\right)\left(x-1\right)\left(x+3\right)}{\left(x-2\right)\left(x+4\right)\left(x+3\right)}\)=\(\frac{x-1}{x+4}\)

1 tháng 9 2021

giải thích giúp mình nhé

12 tháng 9 2016

bài này dễ lắm, mk làm 1 câu là bn làm câu sau dc hà

bn thấy tử số có 2x chung, vạy tử là; 2x2 +2x = 2x(x+1) 

mẫu số là hằng đẳng thức (x+1)2 = x2 +2x+1

vậy ta có: tử/mẫu = 2x(x+1)/(x+1) = 2x/x+1

12 tháng 9 2016

ko biet

13 tháng 9 2016

\(\frac{x^2+5x+6}{x^2+7x+12}\)=\(\frac{x^2+2x+3x+6}{x^2+3x+4x+12}\)=\(\frac{x\left(x+2\right)+3\left(x+2\right)}{x\left(x+3\right)+4\left(x+3\right)}\)=\(\frac{\left(x+3\right)\left(x+2\right)}{\left(x+4\right)\left(x+3\right)}\)=\(\frac{x+2}{x+4}\)

1 tháng 12 2017

c) hang dang thuc ( x -y+z)^2

o duoi phan h hang dang thuc luon

a) phan h nhan tu ra sao cho co tử la (x-1)(3x^2 -4x +1)

mau la (x-1)(2x^2 -x-3)

 b ) k nhin dc de

22 tháng 10 2021

\(\frac{\left(x-y\right)^3+3xy.\left(x+y\right)+y^3}{x-6y}\)

\(=\frac{x^3-3x^2y+3xy^2-y^3+3x^2y+3xy^2+y^3}{x-6y}\)

\(=\frac{x^3+\left(-3x^2y+3x^2y\right)+\left(3xy^2+3xy^2\right)+\left(-y^3+y^3\right)}{x-6y}\)

\(=\frac{x^3+6xy^2}{x-6y}\)

10 tháng 7 2017

\(A=\dfrac{x^3-7x+6}{x^3+5x^2-2x-24}\)

\(=\dfrac{x^3-2x^2+2x^2-4x-3x+6}{x^3+4x^2+x^2+4x-6x-24}\)

\(=\dfrac{x^2\left(x-2\right)+2x\left(x-2\right)-3\left(x-2\right)}{x^2\left(x+4\right)+x\left(x+4\right)-6\left(x+4\right)}\)

\(=\dfrac{\left(x^2+2x-3\right)\left(x-2\right)}{\left(x^2+x-6\right)\left(x+4\right)}\)

\(=\dfrac{\left(x^2+3x-x-3\right)\left(x-2\right)}{\left(x^2+3x-2x-6\right)\left(x+4\right)}\)

\(=\dfrac{\left[x\left(x+3\right)-\left(x+3\right)\right]\left(x-2\right)}{\left[x\left(x+3\right)-2\left(x+3\right)\right]\left(x+4\right)}\)

\(=\dfrac{\left(x-1\right)\left(x-2\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)\left(x+4\right)}\)

\(=\dfrac{x-1}{x+4}\)

6 tháng 7 2018

\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}=\frac{\left(3x^3-3x^2\right)-\left(4x^2-4x\right)+\left(x-1\right)}{\left(2x^3-2x^2\right)+\left(x^2-x\right)-\left(3x-3\right)}=\frac{\left(x-1\right).\left(3x^2-4x+1\right)}{\left(x-1\right).\left(2x^2+x-3\right)}\\ \)

\(=\frac{3x^2-4x+1}{2x^2+x-3}=\frac{\left(3x^2-3x\right)-\left(x-1\right)}{\left(2x^2-2x\right)+\left(3x-3\right)}=\frac{\left(x-1\right).\left(3x-1\right)}{\left(x-1\right).\left(2x+1\right)}=\frac{3x-1}{2x+1}\)

6 tháng 7 2018

\(\frac{3x^3-7x^2+5x-1}{2x^3-x^2-4x+3}\)

\(=\frac{3x^3-3x^2-4x^2+4x+x-1}{2x^3-2x^2+x^2-x-3x+3}\)

\(=\frac{\left(3x^3-3x^2\right)-\left(4x^2-4x\right)+\left(x-1\right)}{\left(2x^3-2x^2\right)+\left(x^2-x\right)-\left(3x-3\right)}\)

\(=\frac{3x^2\left(x-1\right)-4x\left(x-1\right)+\left(x-1\right)}{2x^2\left(x-1\right)+x\left(x-1\right)-3\left(x-1\right)}\)

\(=\frac{\left(3x^2-4x+1\right)\left(x-1\right)}{\left(2x^2+x-3\right)\left(x-1\right)}\)

\(=\frac{3x^2-4x+1}{2x^2+x-3}\)

\(=\frac{3x^2-3x-x+1}{2x^2-2x+3x-3}\)

\(=\frac{\left(3x^2-3x\right)-\left(x-1\right)}{\left(2x^2-2x\right)-\left(3x-3\right)}\)

\(=\frac{3x\left(x-1\right)-\left(x-1\right)}{2x\left(x-1\right)-3\left(x-1\right)}\)

\(=\frac{3x-1}{2x-3}\)

12 tháng 9 2016

Ta có

\(\frac{10xy^2\left(x+y\right)}{15xy\left(x+y\right)^3}\)\(\frac{2y}{3\left(x+y\right)^2}\)

\(\frac{x^2+2x+1}{5x^3+5x^2}=\frac{\left(x+1\right)^2}{5x^2\left(x+1\right)}=\frac{x+1}{5x^2}\)

23 tháng 6 2017

a) Điều kiện : \(x\ne2;x\ne3\)

 \(B=\frac{2x-9}{x^2-5x+6}-\frac{x+3}{x-2}-\frac{2x+4}{3-x}=\frac{2x-9}{\left(x-2\right)\left(x-3\right)}-\frac{x+3}{x-2}+\frac{2x+4}{x-3}\)

\(=\frac{2x-9-\left(x-3\right)\left(x+3\right)+2\left(x+2\right)\left(x-2\right)}{\left(x-2\right)\left(x-3\right)}=\frac{2x-9-x^2+9+2x^2-8}{\left(x-2\right)\left(x-3\right)}=\frac{x^2+2x-8}{\left(x-2\right)\left(x-3\right)}\)

\(=\frac{\left(x-2\right)\left(x+4\right)}{\left(x-2\right)\left(x-3\right)}=\frac{x+4}{x-3}\)

23 tháng 6 2017

b) Điều kiện \(x\in Z;x\ne2;x\ne3\)

Có \(B=\frac{x+4}{x-3}\in Z\), mà x+4 và x-3 nguyên do x nguyên, nên

\(x+4⋮x-3\Leftrightarrow7⋮x-3\), do đó \(x-3\inƯ\left(7\right)=\left\{1;7;-1;-7\right\}\Rightarrow x\in\left\{4;10;2;-4\right\}\)

mà do x khác 2 (điều kiện) nên ta kết luận \(x\in\left\{4;10;-4\right\}\)