Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a\text{)}.\:\left(x^2+2\right)^2-\left(x+2\right)\left(x-2\right)\left(x^2+4\right)\\ =x^4+4x^2+4-\left(x^2-4\right)\left(x^2+4\right)\\ =x^4+4x^2+4-x^4+16\\ =4x^2+20\)
\(b\text{)}.\:\left(x+1\right)^2-\left(x-1\right)^2-3\left(x+1\right)\left(x-1\right)\\ =\left(x+1+x-1\right)\left(x+1-x+1\right)-3\left(x^2-1\right)\\ =4x-3x^2+3\)
a+b+c=0 <=> c = -a-b
M = a3+b3+c(a2+b2)-abc
M = a3+b3+(-a-b)(a2+b2)-abc
M = a3+b3-a3-a2b-ab2-b3-abc
M = -a2b-ab2-abc
M = -ab(a+b+c)
M = -ab.0 = 0
\(A=x\left(x+4\right)-6\left(x-1\right)\left(x+1\right)+\left(2x-1\right)^2\)
\(A=x^2+4x-6\left(x^2-1\right)+\left(4x^2-4x+1\right)\)
\(A=x^2+4x-6x^2+6+4x^2-4x+1\)
\(A=-x^2+7\)
Để A có giá trị bằng 3 thì :
\(-x^2+7=3\)
\(-x^2=-4\)
\(x^2=4\)
\(x\in\left\{\pm2\right\}\)
Vậy..........
(a + b + c)^2 + (a - b - c)^2 +( b - c - a) ^2 + (c - a - b)^2
= (a + b + c)^2 + (a + b - c)^2 + (a - b - c)^2 + (a - b + c)^2
= (a + b)^2 + 2c(a + b) + c^2 + (a + b)^2 - 2c(a + b) + c^2 +
(a - b)^2 - 2c(a - b) + c^2 + (a - b)^2 + 2c(a - b) +c^2
= 2(a + b)^2 + 2c^2 + 2(a - b)^2 + 2c^2
= 2[(a + b)^2 + (a - b)^2] + 4c^2
=2(2a^2 + 2b^2) + 4c^2
= 4(a^2 + b^2 + c^2)
\(\frac{a^3+1}{a^2+3a+4}=\frac{\left(a+1\right)\left(a^2-a+1\right)}{a^2+3a+4}=\left(a^2-a+1\right)\left(\frac{a+1}{a^2+3a+4}\right)\)