Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(\frac{x^2+3x+2}{3x+6}=\frac{x^2+2x+x+2}{3\cdot\left(x+2\right)}=\frac{\left(x^2+2x\right)+\left(x+2\right)}{3\cdot\left(x+2\right)}=\frac{x\cdot\left(x+2\right)+\left(x+2\right)}{3\cdot\left(x+2\right)}\)
\(=\frac{\left(x+2\right)\cdot\left(x+1\right)}{3\cdot\left(x+2\right)}=\frac{x+1}{3}\)
b) \(\frac{2x^2+x-1}{6x-3}=\frac{2x^2+2x-x-1}{3\cdot\left(2x-1\right)}=\frac{\left(2x^2+2x\right)-\left(x+1\right)}{3\cdot\left(2x-1\right)}\)
\(=\frac{2x\cdot\left(x+1\right)-\left(x+1\right)}{3\cdot\left(2x-1\right)}=\frac{\left(2x-1\right)\cdot\left(x+1\right)}{3\cdot\left(2x-1\right)}=\frac{x+1}{3}\)
\(a,\frac{x^2-8x+15}{x^2-6x+9}\)
\(=\frac{\left(x-4\right)^2-1}{\left(x-3\right)^2}\)
\(=\frac{\left(x-3\right)\left(x-5\right)}{\left(x-3\right)^2}\)
\(=\frac{x-5}{x-3}\)
b) \(\frac{2x^2+3x-2}{x^2+x-2}\)
\(=\frac{2x^2-4x+x-2}{x^2+2x-x-2}\)
\(=\frac{2x\left(x-2\right)+\left(x-2\right)}{x\left(x+2\right)-\left(x+2\right)}\)
\(=\frac{\left(2x+2\right)\left(x-2\right)}{\left(x-1\right)\left(x+2\right)}\)
(Không ghi đề bài)
= (x - 5)²/ [x.(x² - 25)]
= (x - 5)² / [x.(x - 5).(x+5)]
= (x-5) / x.(x+5)
Thay x = -3/5
=> (-3/5-5) / [-3/5.(-3/5+5)]
= -28/5 : (-3/5 . 22/5)
= -28/5 : (-66/25)
= -28/5 . -25/66
= 70/33
Đây nhé!! Chúc bạn học tốt!!✨
a) Điều kiện:
x3 - 8 \(\ne\)0
\(\Leftrightarrow\)(x - 2)(x2 + 2x + 4)\(\ne\)0
\(\Leftrightarrow\hept{\begin{cases}x-2\ne0\\x^2+2x+4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne2\\\left(x+1\right)^2+3\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne2\\\left(x+1\right)^2\ne-3\end{cases}}\)
(vô lí vì (x + 1)2 \(\ge\)0 > -3)
\(\Rightarrow\)x \(\ne\)2
b) \(\frac{3x^2+6x+12}{x^3-8}\)
\(=\frac{3\left(x^2+2x+4\right)}{\left(x-2\right)\left(x^2+2x+4\right)}\)
\(=\frac{3}{x-2}\)
c) Thế x = \(\frac{4001}{2000}\)vào, ta có:
\(\frac{3x^2+6x+12}{x^3-8}\)
\(=\frac{3}{x-2}\)
\(=\frac{3}{\frac{4001}{2000}-2}\)
\(=\frac{3}{\frac{4001}{2000}-\frac{4000}{2000}}\)
\(=\frac{3}{\frac{1}{2000}}\)
\(=3.2000=6000\)
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
Bài 1:
\(6x^2-2\left(x-y\right)^2-6y^2\)
\(=6\left(x-y\right)\left(x+1\right)-2\left(x-y\right)^2\)
\(=2\left(x-y\right)\left(3x+3-x+y\right)\)
\(=2\left(x-y\right)\left(2x+3+y\right)\)
Bài 2:
\(P=\left(3x-1\right)^2+2\left(3x-1\right)\left(x+1\right)+\left(x+1\right)^2\)
\(=\left(3x-1-x-1\right)^2\)
\(=\left(2x-2\right)^2\)(1)
b) Thay \(x=\frac{9}{4}\)vào (1) ta được:
\(\left(2.\frac{9}{4}-2\right)^2\)
\(=\frac{25}{4}\)
Vậy giá trị của P \(=\frac{25}{4}\)khi \(x=\frac{9}{4}\)
Bài 3:
Ta có: \(M=x^2+4x+5\)
\(=\left(x+2\right)^2+1\)
Vì \(\left(x+2\right)^2\ge0;\forall x\)
\(\Rightarrow\left(x+2\right)^2+1\ge0+1;\forall x\)
Hay \(M\ge1;\forall x\)
Dấu"="xảy ra \(\Leftrightarrow\left(x+2\right)^2=0\)
\(\Leftrightarrow x=-2\)
Vậy \(M_{min}=1\Leftrightarrow x=-2\)
Bài 1 : trên là sai nha mình làm lại
\(6x^2-2\left(x-y\right)^2-6y^2\)
\(=6\left(x-y\right)\left(x+y\right)-2\left(x-y\right)^2\)
\(=2\left(x-y\right)\left(3x+3y-x+y\right)\)
\(=2\left(x-y\right)\left(2x+4y\right)\)
\(=4\left(x-y\right)\left(x+2y\right)\)
\(\frac{x^3+125}{x^2-3x-40}=\frac{x^3+5^3}{\left(x^2+5x\right)-\left(8x+40\right)}=\frac{\left(x+5\right)\left(x^2-5x+25\right)}{x\left(x+5\right)-8\left(x+5\right)}\)
\(=\frac{\left(x+5\right)\left(x^2-5x+25\right)}{\left(x+5\right)\left(x-8\right)}=\frac{x^2-5x+25}{x-8}\)