Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x^4-y^4}{y^3-x^3}\)
\(=\frac{\left(x^2+y^2\right)\left(x^2-y^2\right)}{\left(y-x\right)\left(y^2+xy+x^2\right)}\)
\(=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(y-x\right)\left(y^2+xy+x^2\right)}\)
\(=-\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)}\)
\(=-\frac{\left(x^2+y^2\right)\left(x+y\right)}{x^2+xy+y^2}\)
A) X4 - y4 / y3 -x3 = (x2) 2 - (y2 )2 / (y-x)(y^2+xy+x^2)= (x^2-y^2)(x^2+y^2) / (y-x)(y^2+xy+x^2)=-(x-y)(x+y)(x^2+y^2) / (x-y)(x^2+xy+y^2)= - (x+y)(x^2+y^2) / x^2 + xy + y^2
Câu b, bạn nhóm các hạng tử vào vs nhau sẽ xuất hiện nhân tử chung rồi rút gọn đi là ok. Nhóm 2x^3 vs -2x, x^2 vs cộng 1 thì đặt dấu trừ ra ngoài.. Bên dưới nhóm x^3 vs -x,2x^2 vs -2
\(\frac{y^3-x^3}{x^4-y^4}=\frac{\left(y-x\right)\left(y^2+xy+x^2\right)}{\left(x^2-y^2\right)\left(x^2+y^2\right)}=\frac{-\left(x-y\right)\left(y^2+xy+x^2\right)}{\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)}=\frac{-\left(y^2+xy+x^2\right)}{\left(x+y\right)\left(x^2+y^2\right)}\)
\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(y-x\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x^2+y^2\right)\left(x+y\right)}{\left(x^2+xy+y^2\right)}\)
\(\frac{\left(2x-4\right)\left(x-3\right)}{\left(x-2\right)\left(3x^2-27\right)}=\frac{2\left(x-2\right)\left(x-3\right)}{\left(x-2\right)3\left(x-3\right)\left(x+3\right)}=\frac{2}{3\left(x+3\right)}\)
\(\frac{2x^3+x^2-2x-1}{x^3+2x^2-x-2}=\frac{\left(x-1\right)\left(x+1\right)\left(2x+1\right)}{\left(x-1\right)\left(x+1\right)\left(x+2\right)}=\frac{2x+1}{x+2}\)
\(\frac{x^4-y^4}{y^3-x^3}=\frac{\left(x^2+y^2\right)\left(x+y\right)\left(x-y\right)}{\left(y-x\right)\left(x^2+xy+y^2\right)}=-\frac{\left(x^2+y^2\right)\left(x+y\right)}{\left(x^2+xy+y^2\right)}\)
Ta có: \(\frac{y^2-x^2}{x^3-3x^2y+3xy^2-y^3}\)
= \(\frac{\left(y-x\right)\left(y+x\right)}{\left(x-y\right)^3}\)
=\(-\frac{x+y}{\left(x-y\right)^2}\)
=\(-\frac{x+y}{x^2-2xy+y^2}\)
a) \(\frac{3m-6n}{10n-5m}\)
\(=\frac{-3\left(2n-m\right)}{5\left(2n-m\right)}=\frac{-3}{5}\)
b) \(\frac{y^3+y^2+4y+4}{y^2+2y-8}\)
\(=\frac{y^2\left(y+1\right)+4\left(y+1\right)}{y^2+2y+1-9}\)
\(=\frac{\left(y^2+4\right)\left(y+1\right)}{\left(y+1\right)^2-9}\)
\(=\frac{\left(y^2+4\right)\left(y+1\right)}{\left(y-2\right)\left(y+4\right)}\)
c) \(\frac{x^2-xy-xz+yz}{x^2+xy-xz-yz}\)
\(=\frac{x\left(x-y\right)-z\left(x-y\right)}{x\left(x+y\right)-z\left(x+y\right)}\)
\(=\frac{\left(x-z\right)\left(x-y\right)}{\left(x-z\right)\left(x+y\right)}\)
\(=\frac{x-y}{x+y}\)
Ta có: \(\frac{x^2y+2xy^2+y^3}{2x^2+xy-y^2}\)
\(=\frac{x^2y+xy^2+xy^2+y^3}{2x^2+2xy-xy-y^2}\)
\(=\frac{xy\left(x+y\right)+y^2\left(x+y\right)}{2x\left(x+y\right)-y\left(x+y\right)}\)
\(=\frac{\left(x+y\right)\left(xy+y^2\right)}{\left(2x-y\right)\left(x+y\right)}=\frac{xy+y^2}{2x-y}\left(đpcm\right)\)
Ta có: \(\frac{x^2+3xy+2y^2}{x^3+2x^2y-xy^2-2y^3}\)
\(=\frac{x^2+xy+2xy+2y^2}{x^2\left(x+2y\right)-y^2\left(x+2y\right)}\)
\(=\frac{x\left(x+y\right)+2y\left(x+y\right)}{\left(x^2-y^2\right)\left(x+2y\right)}\)
\(=\frac{\left(x+2y\right)\left(x+y\right)}{\left(x+y\right)\left(x-y\right)\left(x+2y\right)}=\frac{1}{x-y}\left(đpcm\right)\)