\(\frac{a^4-3a^2+1}{a^4-a^2-2a-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 7 2018

\(\frac{a^4-3a^2+1}{a^4-a^2-2a-1}\)

Theo đề bài ta có :

Tử số : \(a^4-2a^2+1-a^2\)

\(=\left(a^2-1\right)^2-a^2\)

\(=\left(a^2-1+a\right)\left(a^2-1-a\right)\)

Mẫu số : \(a^4-\left(a^2+2a+1\right)\)

\(=a^4-\left(a+1\right)^2\)

\(=\left(a^2+a+1\right)\left(a^2-a-1\right)\)

Phân thức bằng \(\frac{a^2+a-1}{a^2+a+1}\)với điều kiện  \(a^2-a-1\ne0\)

25 tháng 11 2018

Ta có : \(\frac{a^4-3a^2+1}{a^4-a^2-2a-1}\) \(=\frac{\left(a^4-2a^2+1\right)-a^2}{\left(a^4-a^3-a^2\right)+\left(a^3-a^2-a\right)+\left(a^2-a-1\right)}\)

                                            \(=\frac{\left(a^2-1\right)^2-a^2}{a^2\left(a^2-a-1\right)+a\left(a^2-a-1\right)+\left(a^2-a-1\right)}\)

                                            \(=\frac{\left(a^2-a-1\right)\left(a^2+a-1\right)}{\left(a^2-a-1\right)\left(a^2+a+1\right)}\)

                                            \(=\frac{a^2+a-1}{a^2+a+1}\)

29 tháng 11 2016

1, b) \(\frac{x^2+y^2-4+2xy}{x^2-y^2+4+4x}\) = \(\frac{\left(x^2+2xy+y^2\right)-4}{\left(x^2+4x+4\right)-y^2}\) =\(\frac{\left(x+y\right)^2-2^2}{\left(x+2\right)^2-y^2}\)= \(\frac{\left(x+y+2\right)\left(x+y-2\right)}{\left(x+2+y\right)\left(x+2-y\right)}\) = \(\frac{x+y-2}{x+2-y}\)

2, A= \(\frac{a^2+ax+ab+bx}{a^2+ax-ab-bx}\) = \(\frac{\left(a^2+ax\right)+\left(ab+bx\right)}{\left(a^2+ax\right)-\left(ab+bx\right)}\) = \(\frac{a\left(a+x\right)+b\left(a+x\right)}{a\left(a+x\right)-b\left(a+x\right)}\)= \(\frac{\left(a+x\right)\left(a+b\right)}{\left(a+x\right)\left(a-b\right)}\)= \(\frac{a+b}{a-b}\)

30 tháng 11 2016

THANKS BN

19 tháng 7 2017

a) \(a^4-5a^2+4=\)\(\left(a^4-4a^2\right)-\left(a^2-4\right)=a^2\left(a^2-4\right)-\left(a^2-4\right)=\left(a^2-1\right)\left(a^2-4\right)\)

\(=\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)\)

\(a^4-a^2+4a-4=a^2\left(a^2-1\right)+4\left(a-1\right)=a^2\left(a-1\right)\left(a+1\right)+4\left(a-1\right)\)

\(=\left(a-1\right)\left[a^2\left(a+1\right)+4\right]=\left(a-1\right)\left(a^3+a^2+4\right)\)

\(a^3+a^2+4=\left(a^3+2a^2\right)-\left(a^2+2a\right)+\left(2a+4\right)=a^2\left(a+2\right)-a\left(a+2\right)+2\left(a+2\right)\)

\(=\left(a^2-a+2\right)\left(a+2\right)\)

\(N=\frac{\left(a-1\right)\left(a+1\right)\left(a-2\right)\left(a+2\right)}{\left(a-1\right)\left(a+2\right)\left(a^2-a+2\right)}=\frac{\left(a+1\right)\left(a-2\right)}{a^2-a+2}\)

17 tháng 5 2020

em chịu

19 tháng 7 2017

c)\(P=\)\(\frac{\left(a-b\right)^2-c^2}{\left(a-b+c\right)^2}=\frac{\left(a-b+c\right)\left(a-b-c\right)}{\left(a-b+c\right)^2}=\frac{a-b-c}{a-b+c}\)

19 tháng 7 2017

b)\(M\)\(=\frac{\left(a+2\right)\left(a-1\right)^2}{\left(2a-3\right)\left(a-1\right)^2}=\frac{a+2}{2a-3}\)

\(M=a+\frac{\left(2a+b\right)\left(2+b\right)-\left(2a-b\right)\left(2-b\right)}{4-b^2}-\frac{4a}{4-b^2}.\)

\(=a+\frac{4b\left(a+1\right)-4a}{4-b^2}\)

Ta có \(4ab+4b-4a=4\left[\frac{a^2}{a+1}+\frac{a}{a+1}-4a\right]=-12a\)

     \(4-b^2=4-\frac{a^2}{\left(a+1\right)^2}=\frac{4\left(a^2+2a+1\right)-a^2}{\left(a+1\right)^2}=\frac{3a^2+8a+4}{\left(a+1\right)^2}\)

\(\Rightarrow M=a+\frac{-12a\left(a+1\right)^2}{3a^2+8a+4}\)

\(=-\frac{9a^3+16a^2+8a}{3a^2+8a+4}\)

12 tháng 3 2020

 \(M=a+\frac{2a+b}{2-b}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)

      \(=a-\frac{2a+b}{b-2}-\frac{2a-b}{2+b}+\frac{4a}{b^2-4}\)

      \(=a-\frac{\left(2a+b\right)\left(2+b\right)+\left(2a-b\right)\left(b-2\right)}{\left(b-2\right)\left(b+2\right)}+\frac{4a}{b^2-4}\) 

      \(=a-\frac{4b\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)

      \(=a-\frac{4\frac{a}{a+1}\left(a+1\right)}{b^2-4}+\frac{4a}{b^2-4}\)

      \(=a-\frac{4a}{b^2-4}+\frac{4a}{b^2-4}\)

      \(=a\)