K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 9 2023

Câu này  cô làm rồi em nhá, em xem phần câu hỏi của tôi ý

24 tháng 9 2023

Q = \(\dfrac{1+x^4+x^8+...+x^{2020}}{1+x^2+...+x^{2022}}\)

Đặt A = 1 + \(x^4\) + \(x^8\) +...+ \(x^{2020}\)

Đặt B = 1 + \(x^2\) + ...+ \(x^{2022}\)

Thì Q = \(\dfrac{A}{B}\) 

A              = 1 + \(x^4\) + \(x^8\) + ...+ \(x^{2020}\)

A.\(x^4\)         =       \(x^4\) + \(x^8\) +....+ \(x^{2020}\) + \(x^{2024}\)

A.\(x^4\) - A    = \(x^{2024}\) - 1

A              = \(\dfrac{x^{2024}-1}{x^4-1}\) 

B             = 1 + \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\) 

B.\(x^2\)        =       \(x^2\) + \(x^4\) +...+ \(x^{2020}\) + \(x^{2022}\) + \(x^{2024}\)

B\(x^2\) - B   =       \(x^{2024}\) - 1

B             = \(\dfrac{x^{2024}-1}{x^2-1}\)

Q = \(\dfrac{\dfrac{x^{2024}-1}{x^4-1}}{\dfrac{x^{2024}-1}{x^2-1}}\)

Q  = \(\dfrac{x^{2024}-1}{x^4-1}\) \(\times\)\(\dfrac{x^2-1}{x^{2024}-1}\)

Q  = \(\dfrac{1}{x^2+1}\)

 

18 tháng 12 2021

\(=\dfrac{1}{x}-\dfrac{1}{x+2}+\dfrac{1}{x+2}-\dfrac{1}{x+4}+...+\dfrac{1}{x+2020}-\dfrac{1}{x+2022}\)

\(=\dfrac{x+2022-x}{x\left(x+2022\right)}=\dfrac{2022}{x\left(x+2022\right)}\)

19 tháng 12 2021

em cảm ơn vui

23 tháng 7 2017

a, \(\frac{x^{32}+x^{16}+1}{x^{16}+x^8+1}\)

\(=\frac{x^8+x^4+1}{x^4+x^2+1}\) Vậy phân thức \(a=\frac{x^8+x^4+1}{x^4+x^2+1}\)

P/s; Căn thức a, là phân số tối giản 

b, \(\frac{x^8+3x^4+4}{x^4+x^2+2}\)

\(=\frac{x^4+3x^2+2}{x^2+x^1+1}\) Vậy căn thức \(b=\frac{x^4+3x^2+2}{x^2+x^1+1}\)

P/s; Căn thức b, có thể rút gọn được cho 2 và 4

Em ko chắc đâu nhé *-*

Câu 1: 

1: Ta có: \(P=\left(\dfrac{x^2}{x^2-3}+\dfrac{2x^2-24}{x^4-9}\right)\cdot\dfrac{7}{x^2+8}\)

\(=\left(\dfrac{x^2\left(x^2+3\right)}{\left(x^2-3\right)\left(x^2+3\right)}+\dfrac{2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\right)\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+3x^2+2x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+5x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^4+8x^2-3x^2-24}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{x^2\left(x^2+8\right)-3\left(x^2+8\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{\left(x^2+8\right)\left(x^2-3\right)}{\left(x^2-3\right)\left(x^2+3\right)}\cdot\dfrac{7}{x^2+8}\)

\(=\dfrac{7}{x^2+3}\)

NV
3 tháng 4 2021

Câu 2a đề sai, pt này ko giải được

2b.

\(P\left(x\right)=\left(2x+7\right)\left(x^2-4x+4\right)+\left(a+20\right)x+\left(b-28\right)\)

Do \(\left(2x+7\right)\left(x^2-4x+4\right)⋮\left(x^2-4x+4\right)\)

\(\Rightarrow P\left(x\right)\) chia hết \(Q\left(x\right)\) khi \(\left(a+20\right)x+\left(b-28\right)\) chia hết \(x^2-4x+4\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+20=0\\b-28=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=-20\\b=28\end{matrix}\right.\)

3a.

\(VT=\dfrac{1}{1+x^2}+\dfrac{1}{1+y^2}=\dfrac{2+x^2+y^2}{1+x^2+y^2+x^2y^2}=1+\dfrac{1-x^2y^2}{1+x^2+y^2+x^2y^2}\le1+\dfrac{1-x^2y^2}{1+2xy+x^2y^2}\)

\(VT\le1+\dfrac{\left(1-xy\right)\left(1+xy\right)}{\left(xy+1\right)^2}=1+\dfrac{1-xy}{1+xy}=\dfrac{2}{1+xy}\) (đpcm)

3b

Ta có: \(n^3-n=n\left(n-1\right)\left(n+1\right)\) là tích 3 số nguyên liên tiếp nên luôn chia hết cho 6

\(\Rightarrow n^3\) luôn đồng dư với n khi chia 6

\(\Rightarrow S\equiv2021^{2022}\left(mod6\right)\)

Mà \(2021\equiv1\left(mod6\right)\Rightarrow2021^{2020}\equiv1\left(mod6\right)\)

\(\Rightarrow2021^{2022}-1⋮6\)

\(\Rightarrow S-1⋮6\)

\(=\dfrac{\left(x^{10}-x\right)+\left(x^5-x^2\right)+\left(x^2+x+1\right)}{x^8+x^4+1}\)

\(=\dfrac{x\left(x^9-1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)}{x^8+2x^4+1-x^4}\)

\(=\dfrac{x\left(x^3-1\right)\left(x^6+x^3+1\right)+x^2\left(x^3-1\right)+\left(x^2+x+1\right)}{\left(x^4+1\right)^2-x^4}\)

\(=\dfrac{\left(x-1\right)\left(x^2+x+1\right)\left(x^7+x^4+x+x^2\right)+\left(x^2+x+1\right)}{\left(x^4-x^2+1\right)\left(x^4+x^2+1\right)}\)

\(=\dfrac{\left(x^2+x+1\right)\left[\left(x-1\right)\left(x^7+x^2+x^4+x\right)+1\right]}{\left(x^4+2x^2+1-x^2\right)\left(x^4-x^2+1\right)}\)

\(=\dfrac{\left(x-1\right)\left(x^7+x^4+x^2+x\right)+1}{\left(x^2+1-x\right)\left(x^4-x^2+1\right)}\)

14 tháng 1 2016

-x^61+5*x^60+x^59-5*x^58-x^55+5*x^54+x^53-5*x^52-x^49+5*x^48+x^47-5*x^46x^43+5*x^42+x^41-5*x^40-x^37+5*x^36+x^35-5*x^34-x^49+5*x^48+x^47-5*x^46x^43+5*x^42+x^41-5*x^40-x^37+5*x^36+x^35-5*x^34-x^31+5*x^30+x^27-5*x^26-x^25+5*x^24+x^21-5*x^20-x^19+5*x^18+x^15-5*x^14-x^13+5*x^12+x^9-5*x^8-x^7+5*x^6+x^3-5*x^2-x+5

26 tháng 10 2023

a) \(\dfrac{2\left(x+1\right)^2}{4x\left(x+1\right)}\left(x\ne0;x\ne-1\right)\)

\(=\dfrac{2\left(x+1\right)^2:2\left(x+1\right)}{4x\left(x+1\right):2\left(x+1\right)}\)

\(=\dfrac{x+1}{2x}\)

b) \(\dfrac{\left(8-x\right)\left(-x-2\right)}{\left(x+2\right)^2}\left(x\ne-2\right)\)

\(=\dfrac{-\left(8-x\right)\left(x+2\right)}{\left(x+2\right)^2}\)

\(=\dfrac{-\left(8-x\right)}{x+2}\)

\(=\dfrac{x-8}{x+2}\)

c) \(\dfrac{2\left(x-y\right)}{y-x}\left(x\ne y\right)\)

\(=\dfrac{2\left(x-y\right)}{-\left(x-y\right)}\)

\(=-2\)

d) \(\dfrac{\left(x+2\right)^2}{2x+4}\left(x\ne-2\right)\)

\(=\dfrac{\left(x+2\right)^2}{2\left(x+2\right)}\)

\(=\dfrac{x+2}{2}\)

26 tháng 10 2023

ĐKXĐ: \(x\neq0;x\neq-1\)

\(\dfrac{2(x+1)^2}{4x(x+1)}=\dfrac{2(x+1)}{4x}=\dfrac{x+1}{2x}\)

$---$

ĐKXĐ: \(x\neq-2\)

\(\dfrac{(8-x)(-x-2)}{(x+2)^2}=\dfrac{-(8-x)(x+2)}{(x+2)^2}=\dfrac{x-8}{x+2}\)

$---$

ĐKXĐ: \(x\neq y\)

\(\dfrac{2(x-y)}{y-x}=\dfrac{-2(y-x)}{y-x}=-2\)

$---$

ĐKXĐ: \(x\neq-2\)

\(\dfrac{(x+2)^2}{2x+4}=\dfrac{(x+2)^2}{2(x+2)}=\dfrac{x+2}{2}\)

a kham khảo nha , e nhờ a e lm chứ ko phải e lm nha ! 

\(\left(x-2\right)\left(\frac{3}{x}+2-\frac{5}{2x}-4+\frac{8}{x^2}-4\right)\)

\(\left(x-2\right)\left[\left(\frac{3}{x}-\frac{5}{2x}\right)-6+\frac{8}{x^2}\right]\)

\(\left(x-2\right)\left(\frac{1}{2x}-6+\frac{8}{x^2}\right)\)

15 tháng 3 2020

\(\left(x-2\right)\left(\frac{3}{x+2}-\frac{5}{2x-4}+\frac{8}{x^2-4}\right)\)

\(=\left(x-2\right)\left[\frac{3}{x+2}-\frac{5}{2\left(x-2\right)}+\frac{8}{\left(x-2\right)\left(x+2\right)}\right]\)

\(=\left(x-2\right)\left[\frac{3.2\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}-\frac{5\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{8.2}{2\left(x-2\right)\left(x+2\right)}\right]\)

\(=\left(x-2\right)\left[\frac{6\left(x-2\right)}{2\left(x-2\right)\left(x+2\right)}-\frac{5\left(x+2\right)}{2\left(x-2\right)\left(x+2\right)}+\frac{16}{2\left(x-2\right)\left(x+2\right)}\right]\)

\(=\left(x-2\right)\left[\frac{6\left(x-2\right)-5\left(x+2\right)+16}{2\left(x-2\right)\left(x+2\right)}\right]\)

\(=\frac{\left(x-2\right)\left(x-6\right)}{2\left(x-2\right)\left(x+2\right)}\)

\(=\frac{x-6}{2\left(x+2\right)}\)