K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 2 2017

\(\frac{3.5.7.11.13.37-10101}{1212120+40404}\)

\(=\frac{3.5.7.11.13.37-3.7.13.37}{40404.30+40404.1}\)

\(=\frac{3.7.13.37.\left(5.11-1\right)}{40404.\left(30+1\right)}\)

\(=\frac{3.7.13.37.54}{40404.31}\)

\(=\frac{3.7.13.37.54}{3.7.13.37.31.4}\)

\(=\frac{54}{31.4}=\frac{27}{62}\)

26 tháng 4 2015

\(\frac{27}{62}\)

26 tháng 4 2015
555555
48974506581/1212120

 

27 tháng 2 2019

\(\frac{3.5.7.11.13.37-10101}{\left(1212120-41414\right)}\)

=\(\frac{\left(3.5.7.11.13.37\right).5-10101.1}{120.10101-4.10101}\)

=\(\frac{10101.\left(5-1\right)}{10101.\left(120-4\right)}\)=\(\frac{4}{116}\)=\(\frac{1}{29}\)

16 tháng 5 2015

A= [5.11.10101 -10101]/[10101.120+10101.4] = 10101.[5.11-1] / 101.[120+4] = 54/124=27/62

đúng nhé

4 tháng 5 2015

.5.7.11.13.37-10101/1212120+40404

=3.5.7.11.13.37-10101/1212120.1/10+40404 (vì 1/1212120=1/121212.1/10)

= 3.37.7.11.13.5-101010/121212.1/100+40404

=111.1001.5-5/6.1/100+40404

=151515.5-250/3

=595959-250/3

=1787876/3

13 tháng 4 2017

1787876/3

25 tháng 5 2015

Ta có:

\(A=\frac{3.5.7.11.13.37-10101}{1212120+40404}\)

\(=\frac{\left(3.7.11.13.37\right).5-10101.1}{120.10101+4.10101}\)

\(=\frac{10101.\left(5-1\right)}{10101.\left(120+4\right)}\)

\(=\frac{4}{124}=\frac{1}{31}\)

25 tháng 4 2016

Sai rồi:

A = 5.11.(3.7.13.37) - 10101/(10101.120 + 10101.4)

= (5.11.10101 - 10101)/(10101.120+10101.4)

= 10101(5.11-1)/10101(120+4)

= 27/62.

\(A=\frac{3.5.7.11.13.37-10101}{1212120+40404}\)

\(A=\frac{\left(3.7.13.17\right).\left(5.11\right)-10101}{120.10101+4.10101}\)

\(A=\frac{10101.55-10101.1}{120.10101+4.10101}\)

\(A=\frac{10101.\left(55-1\right)}{10101.\left(120+4\right)}\)

\(A=\frac{10101.54}{10101.124}\)

\(A=\frac{54}{124}\)

\(A=\frac{27}{62}\)

- chúc bn hok tốt

#Hạ 

13 tháng 3 2016

Rút gọn A=27/62.. check mk nhá

13 tháng 3 2016

Rút gọn A = 27/62 

k cho mình nhé

13 tháng 3 2016

\(A=\frac{3x5x7x11x13x37-10101}{1212120+40404}=\frac{545454}{1252524}=\frac{27}{62}\)

ai tích mình tích lại