Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{9^9\cdot225^5\cdot8^7}{18^{12}\cdot625^3\cdot24^3}=\frac{9^9\cdot\left(\left(3\cdot5\right)^2\right)^5\cdot8^7}{\left(9\cdot2\right)^{12}\cdot\left(\left(5^2\right)^2\right)^3\cdot\left(8\cdot3\right)^3}\)
\(=\frac{1}{9^3\cdot2^{12}}\cdot\frac{9^5\cdot5^{10}}{5^{12}}\cdot\frac{8^7}{8^3\cdot3^3}\)
\(=\frac{9^2\cdot8^4}{2^{12}\cdot5^2\cdot3^3}\)
\(=\frac{9\cdot\left(2^4\right)^3}{\left(2^4\right)^3\cdot5^2}\)
\(=\frac{9}{25}\)
\(\frac{9^{14}\cdot25^5\cdot8^7}{18^{12}\cdot625^3\cdot24^3}=\frac{\left(3^2\right)^{14}\cdot\left(5^2\right)^5\cdot\left(2^3\right)^7}{\left(3^2\cdot2\right)^{12}\cdot\left(5^4\right)^3\cdot\left(3\cdot2^3\right)^3}\)
\(=\frac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{24}\cdot2^{12}\cdot5^{12}\cdot3^3\cdot2^9}=\frac{3^{28}\cdot5^{10}\cdot2^{21}}{3^{25}\cdot5^{12}\cdot2^{21}}=\frac{3^3}{5^2}=\frac{27}{25}\)
\(\frac{9^{14}.225^5.8^7}{18^{12}.625^3.24^3}=\frac{\left(3^2\right)^{14}.\left(3^2.5^2\right)^5.\left(2^3\right)^7}{\left(3^2.2\right)^{12}.\left(5^4\right)^3.\left(3.2^3\right)^3}=\frac{3^{28}.3^{10}.5^{10}.2^{21}}{3^{24}.2^{12}.5^{12}.3^3.2^9}=\frac{3^{38}.5^{10}.2^{21}}{3^{27}.2^{21}.5^{12}}=\frac{3^{11}}{5^2}\)
\(\frac{9^{14}}{18^{12}}.\frac{25^5}{625^3}.\frac{8^7}{24^3}\)
\(=\frac{9^{14}}{\left(9.2\right)^{12}}.\frac{25^5}{25^6}.\frac{8^7}{\left(8.3\right)^3}\)
\(=\frac{9^{14}}{9^{12}.2^{12}}.\frac{1}{25}.\frac{8^7}{8^3.3^3}\)
\(=\frac{9^2}{2^{12}}.\frac{1}{25}.\frac{8^4}{3^3}\)
\(=\frac{81}{4096}.\frac{1}{25}.\frac{4096}{27}\)
\(=\frac{81}{4096}.\frac{4096}{27}.\frac{1}{24}=3.\frac{1}{24}=\frac{3}{24}\)
**** **** ****
a) Ta có :
990 = 2.32.5.11
2610=2.32.5.29
ƯCLN(990;2610) = 2.32.5=90
\(\Rightarrow\frac{990}{2610}=\frac{990:90}{2610:90}=\frac{11}{29}\)
Tương tự với câu b)
\(a,\frac{990}{2610}=\frac{990:90}{2610:90}=\frac{11}{29}\)
\(b,\frac{374}{506}=\frac{374:2}{506:2}=\frac{187}{253}=\frac{187:11}{253:11}=\frac{17}{23}\)
\(c,\frac{3600-75}{8400-175}=\frac{3525}{8225}=\frac{3525:25}{8225:25}=\frac{141}{329}\)
\(d,\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}=\frac{9^{12}.9^2.25^3.25^2.8^3.8^4}{\left(9.2\right)^{12}.\left(25.25\right)^3.\left(8.3\right)^3}=\frac{9^{12}.9^2.25^3.25^2.8^3.8^3.8}{9^{12}.2^{12}.25^3.25^2.25.8^3.3^3}=\frac{9^2.8}{2^{12}.25.3^3}\) đến đây bn tự làm nốt đi!
~ mỏi ~
20112-(304+2012)+(2013+304)
=20112-304-2012+2013+304
=20112+(-2012+2013)+(-304+304)
=20112+1+0=20113
\(\frac{9^{14}.25^5.8^7}{18^{12}.625^3.24^3}=\frac{\left(3^2\right)^{14}.25^5.\left(2^3\right)^7}{2^{12}.\left(3^2\right)^{12}.\left(25^2\right)^3.\left(2^3\right)^3.3^3}=\)\(\frac{3^{28}.25^5.2^{21}}{2^{12}.2^9.3^{24}.3^3.25^6}=\frac{3^{28}.25^5.2^{21}}{2^{21}.3^{27}.25^6}\)\(=\frac{3}{25}\)
Ta có: \(\frac{9^9.225^5.8^7}{18^{12}.625^3.24^3}\)=\(\frac{\left(3^2\right)^9.\left(25.3^2\right)^5.\left(2^3\right)^7}{\left(2.3^2\right)^{12}.\left(25^2\right)^3.\left(3.8\right)^3}\)
=\(\frac{3^{18}.25^5.3^{10}.2^{21}}{2^{12}.3^{24}.25^6.3^3.2^9}\)
=\(\frac{3^{28}.25^5.2^{21}}{3^{27}.25^6.2^{21}}\)=\(\frac{3}{25.}\)