Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(6\sqrt{\frac{3}{4}}+10\sqrt{\frac{12}{25}}-15\sqrt{\frac{16}{3}}+9\sqrt{\frac{4}{3}}\)
\(=6\cdot\frac{\sqrt{3}}{2}+10\cdot\frac{2\sqrt{3}}{5}-15\cdot\frac{4}{\sqrt{3}}+9\cdot\frac{2}{\sqrt{3}}\)
\(=3\sqrt{3}+4\sqrt{3}-20\sqrt{3}+6\sqrt{3}=-7\sqrt{3}\)
Trả lời:
\(6\sqrt{\frac{3}{4}}+10\sqrt{\frac{12}{25}}-15\sqrt{\frac{16}{3}}+9\sqrt{\frac{4}{3}}\)
\(=6.\frac{\sqrt{3}}{\sqrt{4}}+10.\frac{\sqrt{12}}{\sqrt{25}}-15.\frac{\sqrt{16}}{\sqrt{3}}+9.\frac{\sqrt{4}}{\sqrt{3}}\)
\(=6.\frac{\sqrt{3}}{2}+10.\frac{\sqrt{2^2.3}}{5}-15.\frac{4}{\sqrt{3}}+9.\frac{2}{\sqrt{3}}\)
\(=3\sqrt{3}+10.\frac{2\sqrt{3}}{5}-15.\frac{4\sqrt{3}}{3}+9.\frac{2\sqrt{3}}{3}\)
\(=3\sqrt{3}+4\sqrt{3}-20\sqrt{3}+6\sqrt{3}\)
\(=\left(3+4-20+6\right).\sqrt{3}=-7\sqrt{3}\)
những ai thích xem minecraft và blockman go thì hãy xem kênh youtube của mik kênh mik là M.ichibi các bn nhớ sud và chia sẻ cho nhiều người khác nhé
1. Câu hỏi của Phạm Tiến Dũng new - Toán lớp 9 - Học toán với OnlineMath
1. Câu hỏi của Phạm Tiến Dũng new - Toán lớp 9 - Học toán với OnlineMath
Với n > 0 Ta có:
\(\frac{1}{\sqrt{n+1}-\sqrt{n}}=\frac{\sqrt{n+1}+\sqrt{n}}{\left(\sqrt{n+1}-\sqrt{n}\right)\left(\sqrt{n+1}+\sqrt{n}\right)}=\frac{\sqrt{n+1}+\sqrt{n}}{n+1-n}\)
\(=\sqrt{n+1}+\sqrt{n}\)
\(\Rightarrow\frac{1}{\sqrt{16}-\sqrt{15}}-\frac{1}{\sqrt{15}-\sqrt{14}}+...+\frac{1}{\sqrt{10}-\sqrt{9}}\)
\(=\sqrt{16}+\sqrt{15}-\sqrt{15}-\sqrt{14}+...+\sqrt{10}+\sqrt{9}\)
\(\sqrt{16}+\sqrt{9}=3+4=7\)
Cần CM: \(\frac{1}{9-a}-\frac{12}{a^2+63}\ge\frac{1}{144}a^2-\frac{1}{16}\) (1)
\(\Leftrightarrow\)\(\frac{a^2+12a-45}{\left(9-a\right)\left(a^2+63\right)}\ge\frac{1}{144}a^2-\frac{1}{16}\)
\(\Leftrightarrow\)\(144\left(a^2+12a-45\right)\ge\left(a-3\right)\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\)
\(\Leftrightarrow\)\(\left(a-3\right)\left[144\left(a+15\right)-\left(a+3\right)\left(9-a\right)\left(a^2+63\right)\right]\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)\left(a^4-6a^3+36a^2-234a+459\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)^2\left(a^3-3a^2+27a+153\right)\ge0\)
\(\Leftrightarrow\)\(\left(a-3\right)^2\left[\left(a-3\right)^2\left(a+3\right)+36a+126\right]\ge0\) ( đúng )
Do đó (1) đúng => \(\Sigma_{cyc}\frac{1}{9-a}-\Sigma_{cyc}\frac{12}{a^2+63}\ge\frac{1}{144}\left(a^2+b^2+c^2\right)-\frac{3}{16}=0\)
\(\Rightarrow\)\(\Sigma_{cyc}\frac{12}{a^2+63}\le\Sigma_{cyc}\frac{1}{9-a}\le\Sigma_{cyc}\frac{1}{a+b}\) ( do \(a+b+c\le9\) )
Dấu "=" xảy ra khi a=b=c=3
\(\frac{-63}{108}\)= \(\frac{-7}{12}\)
\(\frac{-33}{-77}\)= \(\frac{3}{7}\)
\(\frac{-5}{10}\)=\(\frac{-1}{2}\)
\(\frac{14}{63}\)=\(\frac{2}{9}\)
\(\frac{-15}{25}\)=\(\frac{-3}{5}\)
\(\frac{-45}{18}\)=\(\frac{-5}{2}\)
\(\frac{12}{15}\)=\(\frac{4}{5}\)
\(\frac{20}{25}\)=\(\frac{4}{5}\)
\(\frac{31}{12}\):Là phân số tối giản
t.i.c.k nha