Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(1\right)\Leftrightarrow\left(x-3\right)\left(x-y+2\right)=0\)
+)\(x=3\) thi \(\left(2\right)\Leftrightarrow\sqrt{5\cdot3-6}+\sqrt{16-3y}=2\cdot3^2-2\cdot3+y-4\)
\(\Leftrightarrow\sqrt{16-3y}=y+5\)\(\Rightarrow y^2+13y+9=0\)\(\Rightarrow y=\frac{\sqrt{133}-13}{2}\)
+)\(y=x+2\) thi \(\sqrt{5x-6}+\sqrt{16-3\cdot\left(x+2\right)}=2x^2-2x+x+2-4\)
\(\Leftrightarrow\sqrt{10-3x}+\sqrt{5x-6}=2x^2-x-2\)
\(\Rightarrow x=2;y=4\)
\(\Rightarrow \sqrt{y-1}-\sqrt{x}+(y-1)^{2}-x^{2}+y(y-x-1)=0\)
\(\Leftrightarrow (y-x-1)\left ( \underset{>0,x\geq 0 \& 6\geq y\geq 1}{\underbrace{\frac{1}{\sqrt{y-1}+x}+2y+x-1}} \right )=0\Rightarrow y-x-1=0\Leftrightarrow x=y-1\; \;\)\(3\sqrt{6-y}+3\sqrt{5y-9}=2y+5\;\)
\(\Leftrightarrow (8-y)-3\sqrt{6-y}+3(y-1-\sqrt{5y-9})=0\)
\(\Leftrightarrow \frac{y^{2}-7y+10}{(8-y)+3\sqrt{6-y}}+3.\frac{y^{2}-7y+10}{y-1+\sqrt{5y-9}}=0\)
\(\Leftrightarrow (y^{2}-7y+10)(\underset{>0,\forall \frac{9}{5}\leq y\leq 6}{\underbrace{{\frac{1}{(8-y)+3\sqrt{6-y}}+\frac{3}{y-1+\sqrt{5y-9}}}}})=0\)
ĐKXĐ: \(\left\{{}\begin{matrix}x\ge0\\y\ge1\end{matrix}\right.\)
\(xy-y^2+2y-x-1=\sqrt{y-1}-\sqrt{x}\)
\(\Leftrightarrow x\left(y-1\right)-\left(y-1\right)^2+\sqrt{x}-\sqrt{y-1}=0\)
\(\Leftrightarrow\left(y-1\right)\left(x-y+1\right)+\dfrac{x-y+1}{\sqrt{x}+\sqrt{y-1}}=0\)
\(\Leftrightarrow\left(x-y+1\right)\left(y-1+\dfrac{1}{\sqrt{x}+\sqrt{y-1}}\right)=0\)
\(\Leftrightarrow x-y+1=0\)
\(\Rightarrow y=x+1\)
Thay xuống pt dưới:
\(3\sqrt{5-x}+3\sqrt{5x-4}=2x+7\)
\(\Leftrightarrow3\left(x-\sqrt{5x-4}\right)+\left(7-x-3\sqrt{5-x}\right)=0\)
\(\Leftrightarrow\dfrac{3\left(x^2-5x+4\right)}{x+\sqrt{5x-4}}+\dfrac{x^2-5x+4}{7-x+3\sqrt{5-x}}=0\)
\(\Leftrightarrow...\)
\(\dfrac{x+y}{y}.\sqrt{\dfrac{x^3y^2+2x^3y^2+xy^4}{x^2+2xy+y^2}}\\ =\dfrac{x+y}{y}.\sqrt{\dfrac{3x^3y^2+xy^4}{x^2+2xy+y^2}}\\ =\dfrac{x+y}{y}.\dfrac{\sqrt{3x^3y^2+xy^4}}{\sqrt{x^2+2xy+y^2}}\\ =\dfrac{x+y}{y}.\dfrac{\sqrt{3x^3y^2+xy^4}}{\sqrt{\left(x+y\right)^2}}\\ =\dfrac{x+y}{y}.\dfrac{\sqrt{3x^3y^2+xy^4}}{x+y}\\ =\dfrac{1}{y}.\sqrt{3x^3y^2+xy^4}\)
\(\hept{\begin{cases}2x^2-xy+3y^2=13\\x^2+4xy-2y^2=-6\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}12x^2-6xy+18y^2=78\\13x^2+52xy-26y^2=-78\end{cases}}\)
Cộng vế với vế hai phương trình trong hệ ta có:
\(25x^2+46xy-8y^2=0\)
\(\Leftrightarrow\left(x+2y\right)\left(25x-4y\right)=0\Leftrightarrow\orbr{\begin{cases}x=-2y\\x=\frac{4y}{25}\end{cases}}\)
TH1: \(x=-2y\)
Ta có \(4y^2-8y^2-2y^2=-6\Leftrightarrow y^2=1\Leftrightarrow\orbr{\begin{cases}y=1;x=-2\\y=-1;x=2\end{cases}}\)
TH2: \(x=\frac{4y}{25}\)
Ta có \(\frac{16y^2}{625}+\frac{16}{25}y^2-2y^2=-6\Leftrightarrow y^2=\frac{625}{139}\Leftrightarrow\orbr{\begin{cases}y=\frac{25}{\sqrt{139}};x=\frac{4}{\sqrt{139}}\\y=\frac{-25}{\sqrt{139}};x=\frac{-4}{\sqrt{139}}\end{cases}}\)
Vậy hệ có 4 nghiệm.
Điều kiện \(x\ne\pm3;y\ne-2\):
\(P=\frac{2x+3y}{xy+2x-3y-6}-\frac{6-xy}{xy+2x+3y+6}-\frac{x^2+9}{x^2-9}.\)
=> \(P=\frac{2x+3y}{\left(y+2\right)\left(x-3\right)}-\frac{6-xy}{\left(y+2\right)\left(x+3\right)}-\frac{x^2+9}{\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{\left(2x+3y\right)\left(x+3\right)-\left(6-xy\right)\left(x-3\right)-\left(x^2+9\right)\left(y+2\right)}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{2x^2+3xy+6x+9y-6x+x^2y+18-3xy-x^2y-9y-2x^2-18}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}\)
\(P=\frac{0}{\left(y+2\right)\left(x-3\right)\left(x+3\right)}=0\)
=> P=0 (với mọi x khác 3, -3 và y khác -2)