K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 12 2020

Ta có: \(\sqrt{29+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{2+\sqrt{8+2\cdot2\sqrt{2}\cdot1+1}}}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{2+2\sqrt{2}+1}}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{2+2\sqrt{2}\cdot1+1}}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{\left(\sqrt{2}+1\right)^2}}+5\sqrt{2}\)

\(=\sqrt{29+30\left(\sqrt{2}+1\right)}+5\sqrt{2}\)

\(=\sqrt{29+30\sqrt{2}+30}+5\sqrt{2}\)

\(=\sqrt{9+2\cdot3\cdot5\sqrt{2}+50}+5\sqrt{2}\)

\(=\sqrt{\left(3+5\sqrt{2}\right)^2}+5\sqrt{2}\)

\(=3+5\sqrt{2}+5\sqrt{2}=3+10\sqrt{2}\)

30 tháng 7 2018

\(B=\sqrt[3]{5+2\sqrt{13}}+\sqrt[3]{5-2\sqrt{13}}\)

Áp dụng \(\left(a+b\right)^3=a^3+b^3+3ab\left(a+b\right)\)ta có:

\(B^3=5+2\sqrt{13}+5-2\sqrt{13}+3B\sqrt[3]{25-52}\)

\(=10-9B\)

Giải PT: \(B^3+9B-10=0\Leftrightarrow B^3-1+9B-9=0\)\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+1\right)+9\left(B-1\right)=0\)

\(\Leftrightarrow\left(B-1\right)\left(B^2+2B+10\right)=0\)\(\Leftrightarrow\orbr{\begin{cases}B-1=0\\B^2+2B+1+9=0\end{cases}\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+1\right)^2=-9\left(L\right)\end{cases}}}\)

Vậy \(B=1\)

31 tháng 7 2018

À chết mình làm nhầm, phải là \(\left(B-1\right)\left(B^2+B+1\right)\) nha, \(\left(B-1\right)\left(B^2+B+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}B=1\\B^2+2.\frac{1}{2}B+\frac{1}{4}-\frac{1}{4}+2=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2+\frac{7}{4}=0\end{cases}}\)\(\Leftrightarrow\orbr{\begin{cases}B=1\\\left(B+\frac{1}{2}\right)^2=-\frac{7}{4}\left(L\right)\end{cases}}\)

1 tháng 10 2021

\(\sqrt{13+30\sqrt{2}+\sqrt{9+4\sqrt{2}}}\)

\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}\right)^2}+4\sqrt{2}+1^2}}\)

\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1^2}}\)

\(=\sqrt{13+30\sqrt{\left(\sqrt{2}\right)^2+2\sqrt{2}+1^2}}\)

\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(=\sqrt{5^2+2.5.3\sqrt{2}+\left(3+\sqrt{2}\right)^2}\)

\(=\sqrt{\left(5+3+\sqrt{2}\right)^2}\)

\(=\sqrt{\left(5+6\right)}=\sqrt{11}\)

\(=5+6=11\)

2 tháng 10 2021

a)=1
b)=\(3\sqrt{2}+5\)

15 tháng 6 2017

Đặt \(B=\frac{\sqrt{11+\sqrt{5}}+\sqrt{11-\sqrt{5}}}{\sqrt{11+2\sqrt{29}}}\)Ta có B>0

\(B^2=2\Rightarrow B=\sqrt{2}\)

Vậy \(A=\sqrt{2}+\sqrt{\left(2-\sqrt{2}\right)^2}=2\)

27 tháng 6 2021

\(a,=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\) \(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{20-2.3\sqrt{20}+9}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\sqrt{\left(\sqrt{20}-3\right)^2}}}\)\(=\sqrt{\sqrt{5}-\sqrt{6-\sqrt{20}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5-2\sqrt{5}+1}}=\sqrt{\sqrt{5}-\sqrt{\left(\sqrt{5}-1\right)^2}}=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

\(=\sqrt{1}=1\)

\(b,=\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\) \(=\sqrt{3+30\sqrt{2+\sqrt{8+2\sqrt{8}+1}}}\)

\(=\sqrt{3+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\)\(=\sqrt{3+30\sqrt{3+\sqrt{8}}}=\sqrt{3+30\sqrt{2+2\sqrt{2}+1}}\)

\(=\sqrt{3+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{3+30\sqrt{2}+30}=\sqrt{33+30\sqrt{2}}\)

 

 

 

 

a) Ta có: \(\sqrt{\sqrt{5}-\sqrt{3-\sqrt{29-12\sqrt{5}}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-\left(2\sqrt{5}-3\right)}}\)

\(=\sqrt{\sqrt{5}-\sqrt{3-2\sqrt{5}+3}}\)

\(=\sqrt{\sqrt{5}-\sqrt{6-2\sqrt{5}}}\)

\(=\sqrt{\sqrt{5}-\sqrt{5}+1}\)

=1

b) Ta có: \(\sqrt{3+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

\(=\sqrt{3+30\sqrt{2+2\sqrt{2}+1}}\)

\(=\sqrt{3+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{33+30\sqrt{2}}\)

25 tháng 8 2016

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)

 = \(\sqrt{13+30\sqrt{2+\sqrt{\left(1+2\sqrt{2}\right)^2}}}\)= \(\sqrt{13+30\sqrt{\left(1+\sqrt{2}\right)^2}}\)

25 tháng 8 2016

\(\sqrt{43\:+30\sqrt{2}}\) = \(\sqrt{(25+2×5×3\sqrt{2}+18}\) = \(5\:+3\sqrt{2}\)

2 tháng 8 2016

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}\)=\(\sqrt{13+30\sqrt{2+\sqrt{\left(\sqrt{8}+1\right)^2}}}\)

=\(\sqrt{13+30\sqrt{2+\sqrt{8}+1}}\)=\(\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)=\(\sqrt{13+30\sqrt{2}+30}\)

=\(\sqrt{43+30\sqrt{2}}\)=\(\sqrt{\left(5+3\sqrt{2}\right)^2}\)=\(5+3\sqrt{2}\)

2 tháng 10 2016

b/ \(\frac{2\sqrt{2}-1}{\sqrt{2}-1}+\frac{3\sqrt{2}-2}{\sqrt{2}-3}=\frac{\left(2\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}{1}+\frac{\left(2-3\sqrt{2}\right)\left(3+\sqrt{2}\right)}{\left(3-\sqrt{2}\right)\left(3+\sqrt{2}\right)}\)

\(=3+\sqrt{2}+\frac{-7\sqrt{2}}{7}=3\)

c/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)

\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}=\sqrt{43+30\sqrt{2}}=\sqrt{\left(5+3\sqrt{2}\right)^2}=5+3\sqrt{2}\)

 

1 tháng 10 2016

Mình đưa ra đáp án thôi nhé :)

a/ \(\left(\sqrt{\frac{5}{3}-\sqrt{\frac{3}{5}}}\right).\sqrt{15}=\sqrt{25-3\sqrt{15}}\)

b/ \(\frac{2\sqrt{2}-1}{\sqrt{2}-1}+\frac{3\sqrt{2}-2}{\sqrt{2}-3}=3\)

c/ \(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}=5+3\sqrt{2}\)

3 tháng 10 2019

\(\sqrt{13+30\sqrt{2+\sqrt{9+4\sqrt{2}}}}.\)

\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}\right)^2+2.2\sqrt{2}+1}}}\)

\(=\sqrt{13+30\sqrt{2+\sqrt{\left(2\sqrt{2}+1\right)^2}}}\)

\(=\sqrt{13+30\sqrt{2+2\sqrt{2}+1}}\)

\(=\sqrt{13+30\sqrt{\left(\sqrt{2}+1\right)^2}}\)

\(=\sqrt{13+30\left(\sqrt{2}+1\right)}\)

\(=\sqrt{13+30\sqrt{2}+30}=\sqrt{43+30\sqrt{2}}\)

3 tháng 10 2019

Ban vào link này nhé

https://share.icloud.com/photos/0T69uRlJ3wsY5qzsay_zH0wQA