Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải :
a) \(\sqrt{x^2\left(x-1\right)^2}=\left|x\right|\cdot\left|x-1\right|=-x\left(1-x\right)=x^2-x\)
b) \(\sqrt{13x}\cdot\sqrt{\frac{52}{x}}=\sqrt{\frac{13x\cdot52}{x}}=\sqrt{676}=26\)
c) \(5xy\cdot\sqrt{\frac{25x^2}{y^6}}=5xy\cdot\sqrt{\left(\frac{5x}{y^3}\right)^2}=5xy\cdot\frac{-5x}{y^3}=\frac{-25x^2}{y^2}\)
d) \(\sqrt{\frac{9+12x+4x^2}{y^2}}=\sqrt{\frac{\left(2x+3\right)^2}{y^2}}=\frac{2x+3}{-y}=\frac{-2x-3}{y}\)
\(a)\sqrt{9\times^2}-2\times\)
\(=\sqrt{3^2\times^2}-2\times\)
\(=\sqrt{(3\times)^2}-2\times\)
\(=3\times-2\times\)
\(=\times\)
Ta có: \(\sqrt{a^2-ab+b^2}=\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}\ge\sqrt{\frac{1}{4}\left(a+b\right)^2}=\frac{1}{2}\left(a+b\right)\)
khi đó:
\(P\le\frac{1}{\frac{1}{2}\left(a+b\right)}+\frac{1}{\frac{1}{2}\left(b+c\right)}+\frac{1}{\frac{1}{2}\left(a+c\right)}\)
\(=\frac{2}{a+b}+\frac{2}{b+c}+\frac{2}{c+a}\)
Lại có: \(\frac{1}{a}+\frac{1}{b}\ge\frac{\left(1+1\right)^2}{a+b}=\frac{4}{a+b}\)=> \(\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
=> \(P\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)+\frac{1}{2}\left(\frac{1}{b}+\frac{1}{c}\right)+\frac{1}{2}\left(\frac{1}{c}+\frac{1}{a}\right)\)
\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)
Dấu "=" xảy ra <=> a = b = c = 1
Vậy max P = 3 tại a = b = c =1.
Không thích làm cách này đâu nhưng đường cùng rồi nên thua-_-
Đặt \(\sqrt{x+y}=a;\sqrt{y+z}=b;\sqrt{z+x}=c\) suy ra
\(x=\frac{a^2+c^2-b^2}{2};y=\frac{a^2+b^2-c^2}{2};z=\frac{b^2+c^2-a^2}{2}\). Ta cần chứng minh:
\(abc\left(a+b+c\right)\ge\left(a+b+c\right)\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
\(\Leftrightarrow abc\ge\left(a+b-c\right)\left(b+c-a\right)\left(c+a-b\right)\)
Đây là bất đẳng thức Schur bậc 3, ta có đpcm.
\(\sqrt{\left(x+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}+\sqrt{\left(y+\frac{1}{2}\right)^2+\left(\frac{\sqrt{3}}{2}\right)^2}_{ }+\sqrt{\left(z-2\right)^2+\left(\sqrt{3}\right)^2}\ge.\)
\(\sqrt{\left(x+y+1\right)^2+\left(\sqrt{3}\right)^2}+\sqrt{\left(z-2\right)^2+\left(\sqrt{3}\right)^2}\ge\sqrt{\left(x+y+z-1\right)^2+12}=4.\)
Sử dụng Minkowski,
\(x^2-2\sqrt{2}x+\sqrt{2}^2=\left(x-\sqrt{2}\right)^2\)
\(x^2+2\sqrt{5}x+\sqrt{5}^2=\left(x+\sqrt{5}\right)^2\)
\(\sqrt{x^2\left(x-1\right)^2}=\left|x\left(x-1\right)\right|\)
\(x< 0\Rightarrow\left\{{}\begin{matrix}x-1< 0\\x< 0\end{matrix}\right.\Leftrightarrow x\left(x-1\right)>0\Rightarrow\left|x\left(x-1\right)\right|=x\left(x-1\right)=x^2-x\)
\(b,\sqrt{13x}.\sqrt{\frac{52}{x}}=\sqrt{\frac{13.52.x}{x}}=\sqrt{13.52}=\sqrt{13^2.2^2}=\sqrt{26^2}=26\)