Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (a - b)² = (b - a)²
Vậy biểu thức viết lại dưới dạng: a² + 2ab + b² (Với a = x - y + z và b = y - z)
(x - y + z)² + (z - y)² + 2(x - y + z)(y - z)
= (x - y + z)² + 2(x - y + z)(y - z) + (y - z)²
= (x - y + z + y - z)²
= x²
a) \(=x^2+2xy+y^2+x^2-2xy+y^2=2\left(x^2+y^2\right)\)
b) \(=2\left(x^2-y^2\right)+2\left(x^2+y^2\right)=2x^2+2x^2+2y^2-2y^2=4x^2\)( cái này áp dụng luôn kết quả câu trên nha)
c) \(\left(x-y+z\right)^2++2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left(x-y+z+y-z\right)^2=x^2\)
tớ cũng giống Nguyễn Thị Bích Hậu
tích cho nha 1 cái thôi cũng được .
a ) \(\left(x+y\right)^2+\left(x-y\right)^2\)
\(=x^2+2xy+y^2+x^2-2xy+y^2\)
\(=2x^2+2y^2\)
b ) \(2.\left(x-y\right).\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left[\left(x-y\right)+\left(x+y\right)\right]\)
\(=2x\)
c tương tự
nguyễn hoàng mai
MÌnh không ghi đề bài đâu .
\(a,=x^2+2xy+y^2+x^2-2xy+x^2=2\left(x^2+y^2\right)\)2)
\(b,=2\left(x^2-y^2\right)+2\left(x^2+y^2\right)=2x^2+2x^2+2y^2-2y^2=4x^2\)( áp dụng kết quả câu trên )
\(c,\left(x-y+z\right)^2+2\left(x-y+z\right)\left(y-z\right)+\left(y-z\right)^2=\left(x-y+z+y-z\right)^2=x^2\)
\(\left(x+y-z\right)^2+2.\left(x+y-z\right).\left(z-y\right)+\left(y-z\right)^2=\left[\left(x+y-z\right)+\left(z-y\right)\right]^2=x^2\)
Sai đề.
(x-y+z)2 + (z-y)2 + 2.(x-y+z).(y-z)
= (x-y+z)2 + (y-z)2 + 2.(x-y+z).(y-z)
=[(x-y+z)+(y-z)]2
=(x-y+z+y-z)2
=x2
a) \(\left(x+2\right)\left(x^2-2x+4\right)-\left(24+x^3\right)\)
\(=x^3+2^3-24-x^3\)
\(=\left(x^3-x^3\right)+\left(8-24\right)\)
\(=-16\)
phần c hình như sai đầu bài !