Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(d,2,5.5^{n-3}.2.5+5^n-6.5^{n-1}=5.5.5^{n-3}+5^n-6.5^{n-1}=5^2.5^{n-3}+5^n-6.5^{n-1}\)
\(=5^{n-3+2}+5^n-6.5^{n-1}=5^{n-1}\left(1+5-6\right)=5^{n-1}.0=0\)
a, \(10^{n+1}-6.10^n=10^n\left(10-6\right)=4.10^n\)
b. \(2^{n+3}+2^{n+2}-2^{n+1}+2^n=2^n\left(2^3+2^2-2+1\right)=2^n\left(8+4-2+1\right)=11.2^n\)
a: \(10^{n+1}=10^n\cdot10\)
b: \(2^{n+3}+2^{n+1}-2^{n+1}+2^n\)
\(=2^n\cdot8+2^n=9\cdot2^n\)
c: \(90\cdot10^k-10^{k+2}+10^{k+1}\)
\(=90\cdot10^k+10^k\cdot10-10^k\cdot100=0\)
a) \(3^{n+2}+3^n-2^{n+2}-2^n\)
\(=3^n\left(3^2+1\right)-2^n\left(2^2+1\right)\)
\(=3^n.10-2^n.5\)
\(=3^n.10-2^{n-1}.2.5\)chia hết cho 10
b)\(3^{n+3}+3^{n+1}+2^{n+3}+2^{n+2}\)
\(=3^{n+1}\left(3^2+1\right)+2^{n+2}\left(2+1\right)\)
\(=3^{n+1}.10+2^{n+2}.3\)
\(=3^n.3.2.5+2^{n+1}.2.3\)chia hết cho 6
\(a, 10^{n+1} -6.10 ^n\)
= \(10^n (10-6)=4.10^n\)
\(B/ 2^{n+3} + 2^{n+2} - 2^{n+1} +2^n\)
= \(2^n (2^3+2^2-2+1)\)
= \(2^n (8+4-2+1)\)
\(= 11.2^n\)
\(C/ 90.10^k - 10^{k +2} + 10^{k +1} \)
\(= 10^k(90-2+1)\)
= \(89.10^k\)
\(D/ 2,5 . 5^{n-3} . 10+5^n -6 .5^{n-1}\)
\(= 5.5.5^{n-3} +5^n-6.5^{n-1}\)
= \(5^2 .5^{n-3}+5^n-6.5^{n-1} \)
= \(5^{n-3+2}+5^n -6.5^{n-1}\)
\(= 5^{n-1}(1+5-6)\)
= \(5^{n-1}.0\)
= 0
a) Ta có 3n+2-2n+2+3n-2n=(...34)n x32-(...24)n x22+(...34)n-(...24)n
= (...81)nx9-(...16)nx4+(...81)n -(...16)n
=(...9)n-(...4)n+(..1)n-(...6)n
=(....0)n Có chử số tận cùng là 0 nên chia hết cho 10
Vậy...
a) 2^n (2^3 + 2^2 -2^1+1)=2^n(8+4-2+1)
=2^n * 11
b)10^n ( 90 -10^2 + 10 )=10^N * 0
= 0