K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 9 2019

a, \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)

\(=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)

\(=\sqrt{7}-1-\sqrt{7}-1=-2\)

b, \(\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}\)

\(=\sqrt{2+2\sqrt{2}+1}+\sqrt{4-2.2\sqrt{2}+2}\)

\(=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(=\sqrt{2}+1+2-\sqrt{2}=3\)

7 tháng 9 2019

câu 1 đã làm 

câu 2

\(\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}\)

\(\Leftrightarrow\sqrt{2}+1+\sqrt{2}-2\Leftrightarrow2\sqrt{2}-1\)

17 tháng 6 2017

câu đầu bạn xem lại đề đi nha 

các phần còn lại

b)B=\(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{7-2\sqrt{7}+1}-\sqrt{7+2\sqrt{7}+1}\)=\(\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(\sqrt{7}+1\right)^2}\)=\(\sqrt{7}-1-\left(\sqrt{7}+1\right)=-2\)

c)tính từng căn nha

\(\sqrt{13-4\sqrt{3}}=\sqrt{12-2\sqrt{12}+1}=\sqrt{\left(\sqrt{12}-1\right)^2}=\sqrt{12}-1=2\sqrt{3}-1\)

\(\sqrt{22-12\sqrt{2}}=\sqrt{18-4\sqrt{18}+4}=\sqrt{\left(\sqrt{18}-2\right)^2}=\sqrt{18}-2=3\sqrt{2}-3\)

\(\sqrt{\left(2\sqrt{3}-3\sqrt{2}\right)^2}=3\sqrt{2}-2\sqrt{3}\)

thay vào tính C đc C=2

d)có \(\sqrt{9+4\sqrt{2}}=\sqrt{8+2\sqrt{8}+1}=\sqrt{\left(\sqrt{8}+1\right)^2}=\sqrt{8}+1\)\(\Rightarrow6\sqrt{2+\sqrt{9+4\sqrt{2}}}=6\sqrt{2+\sqrt{8}+1}=6\sqrt{2+2\sqrt{2}+1}\)

=\(6\sqrt{\left(\sqrt{2}+1\right)^2}=6\left(\sqrt{2}+1\right)=6\sqrt{2}+6\)\(\Rightarrow D=\sqrt{17-6\sqrt{2+\sqrt{9+4\sqrt{2}}}}=\sqrt{17-6\sqrt{2}-6}=\sqrt{11-6\sqrt{2}}=\sqrt{9-6\sqrt{2}+2}\)

=\(\sqrt{\left(3-\sqrt{2}\right)^2}=3-\sqrt{2}\)

18 tháng 7 2020

Cảm ơn bạn

a) Ta có: \(\sqrt{3+2\sqrt{2}-\sqrt{3-2\sqrt{2}}}\)

\(=\sqrt{3+2\sqrt{2}-\sqrt{2-2\cdot\sqrt{2}\cdot1+1}}\)

\(=\sqrt{3+2\sqrt{2}-\sqrt{\left(\sqrt{2}-1\right)^2}}\)

\(=\sqrt{3+2\sqrt{2}-\left|\sqrt{2}-1\right|}\)

\(=\sqrt{3+2\sqrt{2}-\left(\sqrt{2}-1\right)}\)

\(=\sqrt{3+2\sqrt{2}-\sqrt{2}+1}\)

\(=\sqrt{4+\sqrt{2}}\)

b) Ta có: \(\sqrt{7-4\sqrt{3}+\sqrt{12+6\sqrt{3}}}\)

\(=\sqrt{7-4\sqrt{3}+\sqrt{9+2\cdot3\cdot\sqrt{3}\cdot3}}\)

\(=\sqrt{7-4\sqrt{3}+\sqrt{\left(3+\sqrt{3}\right)^2}}\)

\(=\sqrt{7-4\sqrt{3}+\left|3+\sqrt{3}\right|}\)

\(=\sqrt{7-4\sqrt{3}+3+\sqrt{3}}\)

\(=\sqrt{10-3\sqrt{3}}\)

c) Ta có: \(\sqrt{5-2\sqrt{6}}+\sqrt{7+2\sqrt{10}}\)

\(=\sqrt{3-2\cdot\sqrt{3}\cdot\sqrt{2}+2}+\sqrt{2+2\cdot\sqrt{2}\cdot\sqrt{5}+5}\)

\(=\sqrt{\left(\sqrt{3}-\sqrt{2}\right)^2}+\sqrt{\left(\sqrt{2}+\sqrt{5}\right)^2}\)

\(=\left|\sqrt{3}-\sqrt{2}\right|+\left|\sqrt{2}+\sqrt{5}\right|\)

\(=\sqrt{3}-\sqrt{2}+\sqrt{2}+\sqrt{5}\)

\(=\sqrt{3}+\sqrt{5}\)

d) Ta có: \(\frac{\sqrt{8-2\sqrt{12}}}{\sqrt{3}-1}-\sqrt{8}\)

\(=\frac{\sqrt{6-2\cdot\sqrt{6}\cdot\sqrt{2}+2}}{\sqrt{3}-1}-\sqrt{8}\)

\(=\frac{\sqrt{\left(\sqrt{6}-\sqrt{2}\right)^2}}{\sqrt{3}-1}-\sqrt{8}\)

\(=\frac{\left|\sqrt{6}-\sqrt{2}\right|}{\sqrt{3}-1}-2\sqrt{2}\)

\(=\frac{\sqrt{6}-\sqrt{2}}{\sqrt{3}-1}-2\sqrt{2}\)

\(=\frac{2\left(\sqrt{3}-1\right)}{\sqrt{3}-1}-2\sqrt{2}\)

\(=2-2\sqrt{2}\)

6 tháng 7 2019

\(b,\frac{2+\sqrt{3}}{1-\sqrt{4-2\sqrt{3}}}+\frac{2-\sqrt{3}}{1+\sqrt{4+2\sqrt{3}}}\)

\(=\frac{2+\sqrt{3}}{1-\sqrt{3-2\sqrt{3}+1}}+\frac{2-\sqrt{3}}{1+\sqrt{3+2\sqrt{3}+1}}\)

\(=\frac{2+\sqrt{3}}{1-\sqrt{\left(\sqrt{3}-1\right)^2}}+\frac{2-\sqrt{3}}{1+\sqrt{\left(\sqrt{3}+1\right)^2}}\)

\(=\frac{2+\sqrt{3}}{1-\left(\sqrt{3}-1\right)}+\frac{2-\sqrt{3}}{1+\sqrt{3}+1}\)

\(=\frac{2+\sqrt{3}}{2-\sqrt{3}}+\frac{2-\sqrt{3}}{2+\sqrt{3}}\)

\(=\frac{\left(2+\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}+\frac{\left(2-\sqrt{3}\right)^2}{\left(2-\sqrt{3}\right)\left(2+\sqrt{3}\right)}\)

\(=\frac{4+4\sqrt{3}+3+4-4\sqrt{3}+3}{4-3}\)

\(=14\)

6 tháng 7 2019

\(a,\frac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)

\(=\frac{\sqrt{2}+\sqrt{3}+4+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+2}\)

\(=\frac{\sqrt{2}+\sqrt{3}+2}{\sqrt{2}+\sqrt{3}+2}+\frac{\sqrt{2}.\sqrt{2}+\sqrt{2}.\sqrt{3}+\sqrt{2}.2}{\sqrt{2}+\sqrt{3}+2}\)

\(=1+\frac{\sqrt{2}\left(\sqrt{2}+\sqrt{3}+2\right)}{\sqrt{2}+\sqrt{3}+2}\)

\(=1+\sqrt{2}\)

18 tháng 5 2019

\(A=\sqrt{4+\sqrt{7}}-\sqrt{4+\sqrt{7}}\Leftrightarrow\sqrt{2}A=\sqrt{8+2\sqrt{7}}-\sqrt{8+2\sqrt{7}}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{\sqrt{7}^2+2\sqrt{7}+1}-\sqrt{\sqrt{7}^2+2\sqrt{7}+1}\)

\(\Leftrightarrow\sqrt{2}A=\sqrt{7}+1-\sqrt{7}-1=0\)

\(\Leftrightarrow A=0\)