Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt x+y−z=a;x−y+z=b;−x+y+z=cx+y−z=a;x−y+z=b;−x+y+z=c thì a + b + c = x + y + z
A=(a+b+c)3−a3−b3−c3A=(a+b+c)3−a3−b3−c3
=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)=(a+b+c−a)[(a+b+c)2+a(a+b+c)+a2]−(b3+c3)
=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[a2+b2+c2+2(ab+bc+ca)+(a2+ab+ac)+a2]−(b+c)(b2−bc+c2)=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]=(b+c)[3a2+b2+c2+3ab+2bc+3ac−b2+bc−c2]
=(b+c)(3a2+3ab+3bc+3ca)=(b+c)(3a2+3ab+3bc+3ca)
=(b+c)(3a(a+b)+3c(a+b))=3(a+b)(b+c)(c+a)
sai đề rồi nhé , đề phải là :
\(\frac{x^3-y^3+z^3+3xyz}{\left(x+y\right)^2+\left(y+z\right)^2+\left(z-x\right)^2}\)
\(=\frac{\left(x-y\right)^3+3xy.\left(x-y\right)+z^3+3xyz}{x^2+2xy+y^2+y^2+2yz+z^2+z^2-2xz+x^2}\)
\(=\frac{\left(x-y+z\right).\left[\left(x-y\right)^2-\left(x-y\right).z+z^2\right]+3xy.\left(x-y+z\right)}{2x^2+2y^2+2z^2+2xy+2yz-2xz}\)
\(=\frac{\left(x-y+z\right).\left(x^2-2xy+y^2-xz+yz+z^2+3xy\right)}{2.\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\frac{\left(x-y+z\right).\left(x^2+y^2+z^2+xy+yz-xz\right)}{2.\left(x^2+y^2+z^2+xy+yz-xz\right)}\)
\(=\frac{x-y+z}{2}\)
\(a,P=x^2-16-x^2+8x-16=8x-32\\ b,=3x^2-6xy+3y^2-2x^2-4xy-2y^2-x^2+y^2\\ =2y^2-10xy=2\cdot9-10\left(-3\right)\cdot2=78\)
ta có B= (x-y)^3 +(y+x)^3 +(y-x)^3 -3xy(x+y)
<=> B= (x-y)^3 -(x-y)^3 +(y+x)( y^2+2xy+x^2 -3xy)
<=>B= (y+x)(y^2-xy +x^2)
<=>B=y^3+x^3
(x-y)3+(x+y)3+(y-x)3-3xy(x+y)
=x3-3x2y+3xy2-y3+x3+3x2y+3xy2+y3+y3-3y2x+3yx2-x3-3x2y-3xy2
=x3+x3-x3-3x2y+3x2y-3yx2-3x2y+3xy2+3xy2-3y2x-3xy2-y3+y3+y3
=x3+y3