Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2S=2^2+2^3+....+2^2015+2^2016
=>2S-S=2^2016-2
=>S=2^2016-2 vậy S=2^2016-2
tick nha
2S=22+23+...+22016
2S-S=22+23+...+22016-2-22-...-22015
S=22016-2
Câu 1.
C = 5 + 42 + 43 + ... + 42020
a) Xét A = 42 + 43 + ... + 42020
=> 4A = 43 + 44 + ... + 42021
=> 4A - A = 3A
= 43 + 44 + ... + 42021 - ( 42 + 43 + ... + 42020 )
= 43 + 44 + ... + 42021 - 42 - 43 - ... - 42020
= 42021 - 42
=> A = \(\frac{4^{2021}-4^2}{3}\)
Thế vào C ta được : \(C=5+\frac{4^{2021}-4^2}{3}=\frac{15}{3}+\frac{4^{2021}-4^2}{3}=\frac{4^{2021}+15-16}{3}=\frac{4^{2021}-1}{3}\)
b) D = 42021 => \(\frac{D}{3}=\frac{4^{2021}}{3}\)
Vì 42021 - 1 < 42021 => \(\frac{4^{2021}-1}{3}< \frac{4^{2021}}{3}\)
=> C < D/3
c) Dùng kết quả ý a) ta được :
3C + 1 = 42x-6
<=> \(3\cdot\frac{4^{2021}-1}{3}+1=4^{2x-6}\)
<=> 42021 - 1 + 1 = 42x-6
<=> 42021 = 42x-6
<=> 2021 = 2x - 6
<=> 2x = 2027
<=> x = 2027/2
Câu 2.
( x - 1 )( 4 + 22 + 23 + ... + 220 ) = 222 - 221
Xét A = 22 + 23 + ... + 220
=> 2A = 23 + 24 + ... + 221
=> A = 2A - A
= 23 + 24 + ... + 221 - ( 22 + 23 + ... + 220 )
= 23 + 24 + ... + 221 - 22 - 23 - ... - 220
= 221 - 4
Thế vô đề bài ta được
( x - 1 )( 4 + 221 - 4 ) = 222 - 221
<=> ( x - 1 ).221 = 221( 2 - 1 )
<=> x - 1 = 1
<=> x = 2
\(\left(1-\frac{1}{2}\right)\cdot\left(1-\frac{1}{3}\right)\cdot\cdot\cdot\left(1-\frac{1}{20}\right)\)
\(=\frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot\cdot\cdot\frac{19}{20}\)
\(=\frac{1\cdot2\cdot3\cdot4\cdot5\cdot6\cdot\cdot\cdot\cdot19}{2\cdot3\cdot4\cdot5\cdot6\cdot7\cdot\cdot\cdot20}\)
\(=\frac{1\cdot\left(2\cdot3\cdot4\cdot5\cdot\cdot\cdot19\right)}{\left(2\cdot3\cdot4\cdot5\cdot\cdot\cdot19\right)\cdot20}\)
\(=\frac{1}{20}\)
a,B=1/2^2+1/3^2+...+1/8^2
suy ra B=1/2.2+1/3.3+1/4.4+....+1/8.8
mà 1/2.2<1/1.2;1/3.3<1/2.3;...;1/8.8<1/7.8
suy ra B<1/1.2+1/2.3+...+1/7.8
B<1-1/2+1/2-1/3+1/3-1/4+...+1/7-1/8
B<1-1/8<1 suy ra B <1
b,C=(1-1/2).(1-1/3)....(1-1/20)
C=1/2.2/3....19/20
C=1.2.3....18.19/2.3.4...19.20
C=1/20
(mình ko chắc vs hết quả phần b đâu nha)
\(P=\left(1^2+2^2+...............+2015^2\right):\left(2^2+4^2+........+4030^2\right)\)
\(P=\left(1^2+2^2+............+2015^2\right):\left[\left(1.2\right)^2+\left(2.2\right)^2+.............+\left(2.2015\right)^2\right]\)
\(P=\left(1^2+2^2+........+2015^2\right):\left(1^2.2^2+2^2.2^2+...............+2015^2.2^2\right)\)
\(P=\left(1^2+2^2+......+2015^2\right):2^2.\left(1^2+2^2+.........+2015^2\right)\)
\(P=\left(1^2+2^2+........+2015^2\right).\frac{1}{2^2.\left(1^2+2^2+..............+2015^2\right)}\)
\(P=\frac{1^2+2^2+...............+2015^2}{2^2.\left(1^2+2^2+............+2015^2\right)}=\frac{1}{2^2}=\frac{1}{4}\)
Chúc bạn học tốt
A = 31 + 32 + 33 + .....+ 32006
=>3A=3.(31 + 32 + 33 + .....+ 32006) = 32 + 33 + .....+ 32007
=>2A=3A-A=(32 + 33 + .....+ 32007)-( 31 + 32 + 33 + .....+ 32006)=32007-3
=>A=(32007-3)/2
A = 31 + 32 + 33 + .....+ 32006
=>3A=3.(31 + 32 + 33 + .....+ 32006) = 32 + 33 + .....+ 32007
=>2A=3A-A=(32 + 33 + .....+ 32007)-( 31 + 32 + 33 + .....+ 32006)=32007-3
=>A=(32007-3)/2
A = 1 + 1/22+1/23+...+1/22015
(1-1/2) A = (1-1/2) (1+1/22+1/23+...+1/22015) = 1 - 1/22016
A = 2 *( 1 -1/22016) = 2 -1/22015
A = 1 + 1/22+1/23+...+1/22015
(1-1/2) A = (1-1/2) (1+1/22+1/23+...+1/22015) = 1 - 1/22016
A = 2 *( 1 -1/22016) = 2 -1/22015
A = \(1+\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{2015}}\)
2A = \(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)
2A - A =\(2+1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2014}}\)\(-\left(1+\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2015}}\right)\)
A = \(2-\frac{1}{2^{2015}}\)
Katherine Lilly Filbert trả lời đúng rồi đấy