Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4) mấy bài kia trình bày dài lắm!! (lười ý mà ahihi)
\(\sqrt{\left(x-\sqrt{2}\right)^2}+\sqrt{\left(y+\sqrt{2}\right)^2}+|x+y+z|=0.\)
\(\Leftrightarrow|x-\sqrt{2}|+|y+\sqrt{2}|+|x+y+z|=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-\sqrt{2}=0\\y+\sqrt{2}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\sqrt{2}\\y=-\sqrt{2}\end{cases}}}\)
Tìm z thì dễ rồi
Áp dụng \(\sqrt{a^2}=\left|a\right|\forall a\) ta có:
\(B=\sqrt{\left(x+1\right)^2}-\sqrt{x^2}\)
\(B=\left|x+1\right|-\left|x\right|\)
Xét 2 trường hợp
- Th1: \(-1\le x< 0\) thì |x + 1| = x - 1; |x| = -x, ta có:
B = (x + 1) - (-x)
B = x + 1 + x
B = 2x + 1
- Th2: \(x\ge0\) thì |x + 1| = x + 1; |x| = x, ta có:
B = (x + 1) - x
B = 1
3: |2x-1|=|x+1|
=>2x-1=x+1 hoặc 2x-1=-x-1
=>x=2 hoặc 3x=0
=>x=2 hoặc x=0
4: \(\Leftrightarrow\left\{{}\begin{matrix}x+\sqrt{5}=0\\y-\sqrt{3}=0\\x-y-z=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\sqrt{5}\\y=\sqrt{3}\\z=x-y=-\sqrt{5}-\sqrt{3}\end{matrix}\right.\)