Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{x^{30}+x^{28}+x^{26}+...+x^2+1}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{\left(x^{30}+x^{26}+x^{22}+...+x^6+x^2\right)+\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{x^2\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)+\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}\)
\(=\frac{x^{28}+x^{24}+x^{20}+...+x^4+1}{\left(x^2+1\right)\left(x^{28}+x^{24}+x^{20}+...+x^4+1\right)}=\frac{1}{x^2+1}\)
\(B=\frac{1+x^2+x^4+...+x^{26}}{1+x^4+x^8+...+x^{24}}\)
\(=\frac{\frac{\left(x^2-1\right)\left(1+x^2+x^4+...+x^{26}\right)}{x^2-1}}{\frac{\left(x^4-1\right)\left(1+x^4+x^8+...+x^{24}\right)}{x^4-1}}\)
\(=\frac{\frac{x^{28}-1}{x^2-1}}{\frac{x^{28}-1}{x^4-1}}=\frac{x^4-1}{x^2-1}=x^2+1\)
\(\frac{149-x}{26}+\frac{171-x}{24}+\frac{189-x}{22}+\frac{203-x}{20}=10\)
\(\left(\frac{149-x}{26}-1\right)+\left(\frac{171-x}{24}-2\right)+\left(\frac{189-x}{22}-3\right)+\left(\frac{203-x}{20}-4\right)=0\)
\(\frac{123-x}{26}+\frac{123-x}{24}+\frac{123-x}{22}+\frac{123-x}{20}=0\)
\(\left(123-x\right)\left(\frac{1}{26}+\frac{1}{24}+\frac{1}{22}+\frac{1}{20}\right)=0\)
\(123-x=0\left(vì\frac{1}{26}+\frac{1}{24}+\frac{1}{22}+\frac{1}{20}\ne0\right)\)
\(\Rightarrow x=123\)
\(A=\)\(\frac{x|x-2|}{x^2+8x-20}+12x-3.\)
\(=\frac{x|x-2|}{\left(x-2\right)\left(x+10\right)}+12x-3\)
Nếu \(x\ge2\Rightarrow x-2\ge0\Leftrightarrow|x-2|=x-2\)
\(\Rightarrow A=\frac{x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{x}{x+10}+12x-3\)
Nếu \(x< 2\Rightarrow x-2< 0\Leftrightarrow|x-2|=-\left(x-2\right)\)
\(\Rightarrow A=\frac{-x\left(x-2\right)}{\left(x-2\right)\left(x+10\right)}+12x-3=\frac{-x}{x+10}+12x-3\)
Ta nhận thấy mẫu của biểu thức trên là:
x26+x24+x22+...+x2+1=(x26+x22+...+x2)+(x24+x20+...+x4+1)
=x2(x24+x20+...+x16+...+1)+(x24+x20+...+x4+1)
=(x24+x20+...+1)(x2+1)
Như vậy\(\frac{x^{24}+x^{20}+x^{16}+...+1}{\left(x^{24}+x^{20}+...+1\right)\left(x^2+1\right)}\)=\(\frac{1}{x^2+1}\)
Tự hỏi tự trả lời