Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
= 2(x^2-y^2) + x^2 + 2xy + y^2+x^2-2xy+y^2
= 2x^2 - 2y^2 + x^2 + 2xy + y^2 + x^2 - 2xy + y^2
= 4x^2
Theo mình là :
2 ( x-y )(x+y)+(x+y)2+(x-y)2 = (2x-2y) (x+y) + (x+y)(x+y) + (x-y)(x-y)
= (x-y)(x+y) + x2+y2 + x2 - 2xy + y2
= x2 - y2 + x2 +y2 + (x-y)2
\(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
cho biểu thức A = (x+y) (x-1)+x(2-x-y)+1
a, rút gọn biểu thức
b, tính giá trị biểu thức khi x=1 y=1/2
(x + y)2 - (x - y)2
= (x2 + 2xy + y2) - (x2 - 2xy + y2)
= x2 + 2xy + y2 - x2 + 2xy - y2
= (x2 - x2) + (y2 - y2) + (2xy + 2xy)
= 4xy
\(\left(x-y\right)\left(x+y\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x^2-y^2\right)\left(x^2+y^2\right)\left(x^4+y^4\right)\)
\(=\left(x^4-y^4\right)\left(x^4+y^4\right)\)
\(=x^8-y^8\)
\(\left(x+y\right)^2-\left(x-y\right)^2-4\left(x-1\right)y\)
\(=x^2+2xy+y^2-x^2+2xy-y^2-4xy+4y\)
\(=4y\)
Bài làm:
Ta có: \(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2\)
\(=\left(2x\right)^2\)
\(=4x^2\)
\(2\left(x-y\right)\left(x+y\right)+\left(x-y\right)^2+\left(x+y\right)^2\)
\(=\left(x+y\right)^2+2\left(x+y\right)\left(x-y\right)+\left(x-y\right)^2\)
\(=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
( x - y ) 2 + ( x + y ) 2
= x2 -2xy + y2 + x2 + 2xy + y2
= 2x2 + 2y2
Study well
\(\left(x-y\right)^2+\left(x+y\right)^2\)
\(\Leftrightarrow x^2-2xy+y^2+x^2+2xy+y^2\)
\(\Leftrightarrow x^2+x^2+y^2+y^2\)
\(\Leftrightarrow2x^2+2y^2\Leftrightarrow2\left(x^2+y^2\right)\)