K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 2 2017

a+b+c=0 <=> c = -a-b

M = a3+b3+c(a2+b2)-abc

M = a3+b3+(-a-b)(a2+b2)-abc

M = a3+b3-a3-a2b-ab2-b3-abc

M = -a2b-ab2-abc

M = -ab(a+b+c)

M = -ab.0 = 0

18 tháng 7 2017

Bài 1:

\(a,\left(x^2-1\right)^3-\left(x^4+x^2+1\right)\left(x^2-1\right)\)

\(=x^6-3x^4+3x^2-1-x^6+1\)

\(=-3x^2\left(x^2-1\right)\)

\(b,\left(x^4-3x^2+9\right)\left(x^2+3\right)-\left(3+x^2\right)^3\)

\(=x^6+27-27-27x^2-9x^4-x^6\)

\(=-9x^2\left(3-x^2\right)\)

18 tháng 7 2017

Bài 5:

\(A=x^2-2x+1\)

\(=\left(x^2-2x+1\right)-2\)

\(=\left(x-1\right)^2-2\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow\left(x-1\right)^2-2\ge-2\)

Vậy Min A = -2

Để A = -2 thì \(x-1=0\Rightarrow x=1\)

b, \(B=4x^2+4x+5\)

\(=\left(4x^2+4x+1\right)+4\)

\(=\left(2x+1\right)^2+4\)

Với mọi giá trị của x ta có:

\(\left(2x+1\right)^2\ge0\Rightarrow\left(2x+1\right)^2+4\ge4\)

Vậy Min B = 4

Để B = 4 thì \(2x+1=0\Rightarrow2x=-1\Rightarrow x=-\dfrac{1}{2}\)

c, \(C=2x-x^2-4\)

\(=-\left(x^2-2x+1\right)-3\)

\(=-\left(x-1\right)^2-3\)

Với mọi giá trị của x ta có:

\(\left(x-1\right)^2\ge0\Rightarrow-\left(x-1\right)^2\le0\Rightarrow-\left(x-1\right)^2-3\le-3\)Vậy Max C = -3

để C = -3 thì \(x-1=0\Rightarrow x=1\)

8 tháng 7 2016

 (a+b-c)^2 + (a-b+c)^2 - 2(b-c)^2 

= (a + b - c)^2 - (b - c)^2 + (a - b + c)^2 - (b - c)^2 

= (a + b - c + b - c)(a + b - c - b + c) + (a - b + c - b + c)(a - b + c + b - c) 

= a^2 + a^2 

= 2.a^2

8 tháng 7 2016

  (a + b + c)^2 + (a - b - c)^2 +( b - c - a) ^2 + (c - a - b)^2 

= (a + b + c)^2 + (a + b - c)^2 + (a - b - c)^2 + (a - b + c)^2 

= (a + b)^2 + 2c(a + b) + c^2 + (a + b)^2 - 2c(a + b) + c^2 + 
(a - b)^2 - 2c(a - b) + c^2 + (a - b)^2 + 2c(a - b) +c^2 

= 2(a + b)^2 + 2c^2 + 2(a - b)^2 + 2c^2 

= 2[(a + b)^2 + (a - b)^2] + 4c^2 

=2(2a^2 + 2b^2) + 4c^2 

= 4(a^2 + b^2 + c^2)

24 tháng 9 2017

\(\left(a+b-c\right)^2-\left(a-c\right)^2-2ab+2bc\)

\(=a^2+b^2+c^2+2ab-2ac-2bc-a^2+2ac-c^2-2ab+2bc\)

\(=b^2\)

24 tháng 9 2017

ko biết

28 tháng 6 2017

Ta có  : (a + b - c)2 + (a - b + c)2 - 2(b - c)2

= a² + b² + c² + 2ab - 2bc - 2ca + a² + b² + c² + 2ca - 2ab - 2bc - 2(b2 - 2bc + c2)

= a² + b² + c² + 2ab - 2bc - 2ca + a² + b² + c² + 2ca - 2ab - 2bc - b2 + 2bc - c2

= 2a2 + b2 + c2 - 2bc