Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\)
\(=\frac{\left(1-x\right)\left(1+x+x^2\right)-x+x^2}{1-x}.\frac{\left(1-x\right)-x^2\left(1-x\right)}{\left(1-x\right)\left(1+x\right)}\)
\(=\frac{\left(1-x\right)\left(1+x+x^2\right)-x\left(1-x\right)}{1-x}.\frac{\left(1-x\right)\left(1-x^2\right)}{\left(1-x\right)\left(1+x\right)}\)
\(=\frac{\left(1-x\right)\left(1+x^2\right)}{1-x}.\frac{\left(1-x\right)\left(1-x\right)\left(1+x\right)}{\left(1-x\right)\left(1+x\right)}\)
\(=\left(1+x^2\right)\left(1-x\right)\)
\(=-x^3+x^2-x+1\)
Ta có : \(A=\left(\frac{1-x^3}{1-x}-x\right):\frac{1-x^2}{1-x-x^2+x^3}\)
\(=\left(\frac{\left(1-x\right)\left(1+x+x^2\right)}{\left(1-x\right)}-x\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)-\left(x^2-x^3\right)}\)
\(=\left(\left(1+x+x^2\right)-x\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)-x^2\left(x-1\right)}\)
\(=\left(1+x^2\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)\left(1-x^2\right)}\)
\(=\left(1+x^2\right):\frac{\left(1-x\right)\left(1+x\right)}{\left(1-x\right)\left(1-x\right)\left(x+1\right)}\)
\(=\left(1+x^2\right):\frac{1}{1-x}\)
\(=\left(1+x^2\right)\left(1-x\right)\)
Bài 1:
a: \(A=\dfrac{x+1+x}{x+1}:\dfrac{3x^2+x^2-1}{x^2-1}\)
\(=\dfrac{2x+1}{x+1}\cdot\dfrac{\left(x+1\right)\left(x-1\right)}{\left(2x+1\right)\left(2x-1\right)}=\dfrac{x-1}{2x-1}\)
b: Thay x=1/3 vào A, ta được:
\(A=\left(\dfrac{1}{3}-1\right):\left(\dfrac{2}{3}-1\right)=\dfrac{-2}{3}:\dfrac{-1}{3}=2\)
\(A=\frac{\left[x\left(x^2-x+1\right)\right]-\left[\left(x+1\right)\left(3-3x\right)\right]+\left[x+4\right]}{x^3+1}\)
\(A=\frac{\left(x^3-x^2+x\right)+3\left(x^2-1\right)+\left(x+4\right)}{x^3+1}=\frac{x^3+2x^2+2x+1}{x^3+1}\)
\(A=\frac{\left(x^3+1\right)+2x\left(x+1\right)}{x^3+1}=1+\frac{2x}{x^2-x+1}\)
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{x^3+1}\)
\(A=\frac{x}{x+1}-\frac{3-3x}{x^2-x+1}+\frac{x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x\left(x^2-x+1\right)-\left(3+3x\right)\left(x+1\right)+\left(x+4\right)}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x^3-x^2+x-9x-3-3x^2+x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(A=\frac{x^3-x^2-3x^2+x-9x+x+3+4}{x^3+1}\)
\(A=\frac{x^3+2x^2-4x+4}{\left(x+1\right)\left(x^2-x+1\right)}\)
\(M=\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a) ĐKXĐ : x ≠ -3 , x ≠ 2
\(=\frac{x+2}{x+3}-\frac{5}{x^2-2x+3x-6}-\frac{1}{x-2}\)
\(=\frac{x+2}{x+3}-\frac{5}{x\left(x-2\right)+3\left(x-2\right)}-\frac{1}{x-2}\)
\(=\frac{\left(x+2\right)\left(x-2\right)}{\left(x+3\right)\left(x-2\right)}-\frac{5}{\left(x+3\right)\left(x-2\right)}-\frac{x+3}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4-5-x-3}{\left(x+3\right)\left(x-2\right)}=\frac{x^2-x-12}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+3x-12}{\left(x+3\right)\left(x-2\right)}=\frac{x\left(x-4\right)+3\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}\)
\(=\frac{\left(x+3\right)\left(x-4\right)}{\left(x+3\right)\left(x-2\right)}=\frac{x-4}{x-2}\)
b) Để M = 1/3
=> \(\frac{x-4}{x-2}=\frac{1}{3}\)( x ≠ -3 , x ≠ 2 )
=> 3( x - 4 ) = x - 2
=> 3x - 12 - x + 2 = 0
=> 2x - 10 = 0
=> 2x = 10
=> x = 5 ( tm )
Vậy x = 5 thì M = 1/3
đk: \(x\ne2,x\ne-3\)
a) Ta có: \(M=\frac{-4+x^2}{x^2+x-6}-\frac{5}{x^2+x-6}-\frac{x+3}{x^2+x-6}\)
\(=\frac{x^2-x-12}{x^2+x-6}=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}=\frac{x-4}{x-2}\)
b) \(M=\frac{1}{3}\Rightarrow\frac{x-4}{x-2}=\frac{1}{3}\Leftrightarrow3x-12=x-2\Leftrightarrow x=5\)
a)\(\frac{x^3-x}{3x+3}=\frac{x.\left(x^2-1\right)}{3.\left(x+1\right)}=\frac{x.\left(x-1\right).\left(x+1\right)}{3.\left(x+1\right)}=\frac{x.\left(x+1\right)}{3}=\frac{x^2+x}{3}\)
\(\left(x+1\right)^3-\left(x-1\right)^3-\left(x-1\right)\left(x^2+x+1\right)\\ =\left[\left(x+1\right)-\left(x-1\right)\right].\left[\left(x+1\right)^2+\left(x+1\right)\left(x-1\right)+\left(x-1\right)^2\right]-\left(x^3-1\right)\\ =2.\left[\left(x^2+2x+1\right)+\left(x^2-1\right)+\left(x^2-2x+1\right)\right]-\left(x^3-1\right)\\ =2.\left(3x^2+1\right)-\left(x^3-1\right)\\ =6x^2+2-x^3+1=-x^3+6x^2+3\)
Ghi thiếu (x^3-1) kìa bạn