K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
15 tháng 10 2020

1.

\(\Leftrightarrow sin^2x\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cos^2x\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(1+cosx\right)\left(sinx+1\right)-2\left(1-cosx\right)=0\)

\(\Leftrightarrow\left(1-cosx\right)\left(sinx+cosx+sinx.cosx-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\Leftrightarrow...\\sinx+cosx+sinx.cosx-1=0\left(1\right)\end{matrix}\right.\)

Xét (1):

Đặt \(sinx+cosx=t\Rightarrow\left[{}\begin{matrix}\left|t\right|\le\sqrt{2}\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)

\(\Leftrightarrow t+\frac{t^2-1}{2}-1=0\)

\(\Leftrightarrow t^2+2t-3=0\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{4}\right)=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow...\)

NV
15 tháng 10 2020

2.

\(\Leftrightarrow\sqrt{3}sinx.cosx+\sqrt{2}cos^2x+\sqrt{6}cosx=0\)

\(\Leftrightarrow cosx\left(\sqrt{3}sinx+\sqrt{2}cosx+\sqrt{6}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\Leftrightarrow...\\\sqrt{3}sinx+\sqrt{2}cosx=-\sqrt{6}\left(1\right)\end{matrix}\right.\)

Xét (1):

Do \(\sqrt{3}^2+\sqrt{2}^2< \left(-\sqrt{6}\right)^2\) nên (1) vô nghiệm

NV
27 tháng 8 2020

d/

\(\Leftrightarrow sinx.cosx\left(sin^2x-cos^2x\right)=\frac{\sqrt{2}}{8}\)

\(\Leftrightarrow2sinx.cosx\left(cos^2x-sin^2x\right)=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow sin2x.cos2x=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow\frac{1}{2}sin4x=-\frac{\sqrt{2}}{4}\)

\(\Leftrightarrow sin4x=-\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}4x=-\frac{\pi}{4}+k2\pi\\4x=\frac{5\pi}{4}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

NV
27 tháng 8 2020

c/

\(\Leftrightarrow\left(sinx-\sqrt{3}cosx\right)\left(sinx+\sqrt{3}\right)cosx=2\left(sinx+\sqrt{3}cosx\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}sinx+\sqrt{3}cosx=0\\sinx-\sqrt{3}cosx=2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{2}sinx+\frac{\sqrt{3}}{2}cosx=0\\\frac{1}{2}sinx-\frac{\sqrt{3}}{2}cosx=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x+\frac{\pi}{3}\right)=0\\sin\left(x-\frac{\pi}{3}\right)=1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\frac{\pi}{3}=k\pi\\x-\frac{\pi}{3}=\frac{\pi}{2}+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{\pi}{3}+k\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)

NV
22 tháng 10 2020

1.

\(\Leftrightarrow\left[{}\begin{matrix}cos4x=-\frac{\sqrt{3}}{2}\\cos4x=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)

\(\Leftrightarrow x=...\)

(Cứ bấm máy giải pt bậc 2 như bt, nó cho 2 nghiệm rất xấu, bạn lưu 2 nghiệm vào 2 biến A; B rồi thoát ra ngoài MODE-1, tính \(\sqrt{A^2}\)\(\sqrt{B^2}\) sẽ ra dạng căn đẹp của 2 nghiệm, lưu ý dấu so với nghiệm ban đầu)

2.

\(\Leftrightarrow cos4x+1+sin\left(2x-\frac{\pi}{2}\right)=cos2x\)

\(\Leftrightarrow2cos^22x-cos2x=cos2x\)

\(\Leftrightarrow cos^22x-cos2x=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\cos2x=1\end{matrix}\right.\)

NV
22 tháng 10 2020

3.

\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left[\frac{\pi}{2}-\left(\frac{\pi}{6}-x\right)\right]=\frac{1}{2}\)

\(\Leftrightarrow\frac{1}{2}sin\left(x+\frac{\pi}{3}\right)+\frac{\sqrt{3}}{2}cos\left(x+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{\pi}{3}+\frac{\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow sin\left(x+\frac{2\pi}{3}\right)=\frac{1}{2}\)

\(\Leftrightarrow...\)

4.

\(\Leftrightarrow2cos4x.cos\left(\frac{\pi}{3}\right)+2sin4x.sin\left(\frac{\pi}{3}\right)+4cos2x=-1\)

\(\Leftrightarrow cos4x+\sqrt{3}sin4x+4cos2x+1=0\)

\(\Leftrightarrow2cos^22x+2\sqrt{3}sin2x.cos2x+4cos2x=0\)

\(\Leftrightarrow2cos2x\left(cos2x+\sqrt{3}sin2x+2\right)=0\)

\(\Leftrightarrow cos2x\left(\frac{\sqrt{3}}{2}sin2x+\frac{1}{2}cos2x+1\right)=0\)

\(\Leftrightarrow cos2x\left[sin\left(2x+\frac{\pi}{6}\right)+1\right]=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cos2x=0\\sin\left(2x+\frac{\pi}{6}\right)=-1\end{matrix}\right.\)

NV
24 tháng 7 2020

c/

ĐKXĐ: ...

\(\Leftrightarrow9-13cosx+4.cos^2x=0\)

\(\Leftrightarrow\left(cosx-1\right)\left(4cosx-9\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{9}{4}>1\left(vn\right)\end{matrix}\right.\)

\(\Rightarrow x=k2\pi\)

d/

\(\Leftrightarrow2\left(tan^2x+1\right)+1=\frac{3}{cosx}\)

\(\Leftrightarrow\frac{2}{cos^2x}-\frac{3}{cosx}+1=0\)

\(\Leftrightarrow\left(\frac{1}{cosx}-1\right)\left(\frac{2}{cosx}-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}\frac{1}{cosx}=1\\\frac{2}{cosx}=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}cosx=1\\cosx=2\left(l\right)\end{matrix}\right.\)

\(\Rightarrow x=k2\pi\)

NV
24 tháng 7 2020

a/

ĐKXĐ: ..

\(\Leftrightarrow1+cot^2x=cotx+3\)

\(\Leftrightarrow cot^2x-cotx-2=0\)

\(\Rightarrow\left[{}\begin{matrix}cotx=-1\\cotx=2\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\frac{\pi}{4}+k\pi\\x=arccot\left(2\right)+k\pi\end{matrix}\right.\)

b/

\(\Leftrightarrow\sqrt{3}\left(1+cot^2x\right)=3cotx+\sqrt{3}\)

\(\Leftrightarrow\sqrt{3}cot^2x-3cotx=0\)

\(\Rightarrow\left[{}\begin{matrix}cotx=0\\cotx=\sqrt{3}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{\pi}{6}+k\pi\end{matrix}\right.\)

NV
25 tháng 7 2020

b/

\(sin^23x-cos^24x=sin^25x-cos^26x\)

\(\Leftrightarrow\frac{1}{2}-\frac{1}{2}cos6x-\frac{1}{2}-\frac{1}{2}cos8x=\frac{1}{2}-\frac{1}{2}cos10x-\frac{1}{2}-\frac{1}{2}cos12x\)

\(\Leftrightarrow cos6x+cos8x=cos10x+cos12x\)

\(\Leftrightarrow2cos7x.cosx=2cos11x.cosx\)

\(\Leftrightarrow cosx\left(cos11x-cos7x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\cos11x=cos7x\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\11x=7x+k2\pi\\11x=-7x+k2\pi\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k\pi}{2}\\x=\frac{k\pi}{9}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{k\pi}{2}\\x=\frac{k\pi}{9}\end{matrix}\right.\)

NV
25 tháng 7 2020

d/

\(\Leftrightarrow2sin8x.cosx=cos\left(\frac{\pi}{2}-2x\right)+1-1-cos\left(\frac{\pi}{2}+4x\right)\) (hạ bậc vế phải)

\(\Leftrightarrow2sin8x.cosx=sin2x+sin4x\)

\(\Leftrightarrow2sin8x.cosx=2sin3x.cosx\)

\(\Leftrightarrow cosx\left(sin8x-sin3x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin8x=sin3x\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\8x=3x+k2\pi\\8x=\pi-3x+k2\pi\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=\frac{k2\pi}{5}\\x=\frac{\pi}{11}+\frac{k2\pi}{11}\end{matrix}\right.\)

NV
22 tháng 7 2020

d/

ĐKXĐ: \(cosx\ne0\)

\(\Leftrightarrow\frac{sin\left(3x-x\right)}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{sin2x}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{2sinx.cosx}{cos^2x}=2\sqrt{3}\)

\(\Leftrightarrow\frac{sinx}{cosx}=\sqrt{3}\)

\(\Leftrightarrow tanx=\sqrt{3}\)

\(\Rightarrow x=\frac{\pi}{3}+k\pi\)

NV
22 tháng 7 2020

c/

ĐKXĐ: \(sin2x\ne0\)

\(\Leftrightarrow\frac{\frac{sinx}{cosx}-sinx}{sin^3x}=\frac{1}{cosx}\)

\(\Leftrightarrow sinx-sinx.cosx=sin^3x\)

\(\Leftrightarrow1-cosx=sin^2x\)

\(\Leftrightarrow1-cosx=1-cos^2x\)

\(\Leftrightarrow cos^2x-cosx=0\Rightarrow\left[{}\begin{matrix}cosx=0\\cosx=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k\pi\\x=k2\pi\end{matrix}\right.\)

NV
30 tháng 9 2019

Đáp án A

Do \(-1\le cosx\le1\Rightarrow\left\{{}\begin{matrix}2+cosx>0\\2-cosx>0\end{matrix}\right.\)

\(\Rightarrow\frac{2+cosx}{2-cosx}>0\) \(\forall x\in R\)