Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ĐKXĐ: Bạn tự làm nha
\(P=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{\sqrt{x}}+\frac{2\left(x-1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\frac{\sqrt{x}\left(2\sqrt{x}+1\right)}{\sqrt{x}}+\frac{2\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}{\sqrt{x}-1}\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-\left(2\sqrt{x}+1\right)+2\left(\sqrt{x}+1\right)\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}-2\sqrt{x}-1+2\sqrt{x}+2\)
\(=\frac{x^2-\sqrt{x}}{x+\sqrt{x}+1}+1\)
\(=\frac{x^2-\sqrt{x}+x+\sqrt{x}+1}{x+\sqrt{x}+1}\)
\(=\frac{x^2+x+1}{x+\sqrt{x}+1}\)
\(B=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{a-\sqrt{a}}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{a-1}\right)\)
\(=\left(\frac{\sqrt{a}}{\sqrt{a}-1}-\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{1}{\sqrt{a}+1}-\frac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right)\)
\(=\frac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{1\left(\sqrt{a}-1\right)-2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(=\frac{\left(\sqrt{a}+1\right)}{\sqrt{a}}.\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}-1-2}\)
\(=\frac{\left(\sqrt{a}+1\right)\left(a-1\right)}{\sqrt{a}\left(\sqrt{a}-3\right)}\)
\(ĐKXĐ:a\ge0\)
\(A=\left(\frac{2\sqrt{a}}{a\sqrt{a}+a+\sqrt{a}+1}+\frac{1}{\sqrt{a}+1}\right):\left(1+\frac{\sqrt{a}}{a+1}\right)\)
\(\Leftrightarrow A=\left(\frac{2\sqrt{a}}{\left(a+1\right)\left(\sqrt{a}+1\right)}+\frac{1}{\sqrt{a}+1}\right):\frac{a+\sqrt{a}+1}{a+1}\)
\(\Leftrightarrow A=\frac{2\sqrt{a}+a+1}{\left(a+1\right)\left(\sqrt{a}+1\right)}\cdot\frac{a+1}{a+\sqrt{a}+1}\)
\(\Leftrightarrow A=\frac{\left(\sqrt{a}+1\right)^2}{\left(\sqrt{a}+1\right)\left(a+\sqrt{a}+1\right)}\)
\(\Leftrightarrow A=\frac{\sqrt{a}+1}{a+\sqrt{a}+1}\)
\(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right)\div\left(\frac{a}{\sqrt{ab}+b}+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)\)
\(=\left(\frac{\sqrt{a}.\left(\sqrt{a}+\sqrt{b}\right)+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}+\frac{b}{\sqrt{a}\left(\sqrt{b}-\sqrt{a}\right)}-\frac{a+b}{\sqrt{ab}}\right)\)
\(=\left(\frac{a+\sqrt{ab}+b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a.\sqrt{a}.\left(\sqrt{b}-\sqrt{a}\right)+b.\sqrt{b}.\left(\sqrt{a}+\sqrt{b}\right)-\left(a+b\right).\left(b-a\right)}{\sqrt{ab}.\left(b-a\right)}\right)\)
\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a\sqrt{ab}-a^2+b\sqrt{ab}+b^2-b^2+a^2}{\sqrt{ab}.\left(b-a\right)}\right)\)
giải tiếp
\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a\sqrt{ab}+b\sqrt{ab}}{\sqrt{ab}\left(b-a\right)}\right)\)
\(=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{\sqrt{ab}.\left(a+b\right)}{\sqrt{ab}.\left(b-a\right)}\right)=\left(\frac{a+b}{\sqrt{a}+\sqrt{b}}\right).\left(\frac{b-a}{a+b}\right)\)
\(=\frac{b-a}{\sqrt{a}+\sqrt{b}}=\frac{\left(b-a\right)\left(\sqrt{a}-\sqrt{b}\right)}{a-b}=\frac{b\sqrt{a}-b\sqrt{b}-a\sqrt{a}+a\sqrt{b}}{a-b}\)
Với \(a>0,a\ne1,a\ne4\) ta có :
\(A=\left(\frac{1}{\sqrt{a}-1}-\frac{1}{\sqrt{a}}\right):\left(\frac{\sqrt{a}+1}{\sqrt{a}-2}-\frac{\sqrt{a}+2}{\sqrt{a}-1}\right)\)
\(A=\left(\frac{\sqrt{a}-\sqrt{a}+1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right):\left(\frac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)-\left(\sqrt{a}+2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\right)\)
\(A=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-\left(a-4\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(A=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{a-1-a+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(A=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\frac{3}{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}\)
\(A=\frac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}.\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-1\right)}{3}\)
\(A=\frac{\sqrt{a}-2}{3\sqrt{a}}\)
Ta có: a√a = √(a².a) = (√a)³
=> 1 - a√a = 1 - (√a)³ = (1 - √a)(a + √a + 1) (1)
Tương tự: 1 + a√a = 1 + (√a)³ = (1 + √a)(a - √a + 1) (2)
Từ (1) và (2) => [ (1-a√a/1-√a+√a).(1+a√a/1+√a-√a) + 1 ].
= [(1 - √a)(a + √a + 1)/(1 - √a) + √a].[(1 + √a)(a - √a + 1)/(1 + √a) - √a ] +1
=(a + √a + 1 + √a)(a - √a + 1- √a) + 1
= (a + 2√a + 1)(a - 2√a + 1) + 1
= (√a + 1)²(√a - 1)² +1
= [(√a + 1)(√a - 1)]² + 1
= (a - 1)² + 1
= a² - 2a + 1 + 1
= a² - 2a + 2
=> [ (1-a√a/1-√a+√a).(1+a√a/1+√a-√a) + 1 ] = a² - 2a + 2 (3)
Áp dụng (3) vào A ta được A = [(1 - a)²]/(a² - 2a + 2)
<=> A = (a² - 2a + 1)/(a² - 2a + 2)
Rút gọn
\(\left(\frac{\sqrt{a}-2}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-2}\right)\div\frac{1}{a-4}\)
\(ĐKXĐ:\hept{\begin{cases}a\ge0\\a\ne4\end{cases}}\)
\(\left(\frac{\sqrt{a}-2}{\sqrt{a}+2}-\frac{\sqrt{a}+2}{\sqrt{a}-2}\right):\frac{1}{a-4}\)
\(=\left[\frac{\left(\sqrt{a}-2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\frac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right].\left(a-4\right)\)
\(=\frac{\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}.\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)\)
\(=\left(\sqrt{a}-2\right)^2-\left(\sqrt{a}+2\right)^2\)
\(=\left(a-4\sqrt{a}+4\right)-\left(a+4\sqrt{a}+4\right)\)
\(=a-4\sqrt{a}+4-a-4\sqrt{a}-4=-8\sqrt{a}\)
ĐK : \(\hept{\begin{cases}a\ge0\\a\ne4\end{cases}}\)
\(=\left(\frac{\left(\sqrt{a}-2\right)\left(\sqrt{a}-2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\frac{\left(\sqrt{a}+2\right)\left(\sqrt{a}+2\right)}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right)\div\frac{1}{a-4}\)
\(=\left(\frac{a-4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}-\frac{a+4\sqrt{a}+4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right)\div\frac{1}{a-4}\)
\(=\left(\frac{a-4\sqrt{a}+4-a-4\sqrt{a}-4}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\right)\div\frac{1}{a-4}\)
\(=\frac{-8\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\times\frac{a-4}{1}\)
\(=\frac{-8\sqrt{a}}{a-4}\times\frac{a-4}{1}=-8\sqrt{a}\)