Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(=\sqrt{\dfrac{7-4\sqrt{3}}{2-\sqrt{3}}}\cdot\sqrt{2+\sqrt{3}}\)
\(=\sqrt{2-\sqrt{3}}\cdot\sqrt{2+\sqrt{3}}=1\)
Bài 2:
\(VT=\left(4+\sqrt{15}\right)\cdot\left(\sqrt{5}-\sqrt{3}\right)\cdot\sqrt{8-2\sqrt{15}}\)
\(=\left(4+\sqrt{15}\right)\left(8-2\sqrt{15}\right)\)
\(=32-8\sqrt{15}+8\sqrt{15}-30=2\)
b) \(\sqrt{\left(7-\sqrt{3}\right)^2}+\sqrt{\left(\sqrt{3}+1\right)^2}\)
\(=7-\sqrt{3}+\sqrt{3}+1\)
\(=8\)
a) \(\sqrt{\left(5-\sqrt{3}\right)^2}=\left|5-\sqrt{3}\right|=5-\sqrt{3}\)
b) \(\sqrt{\left(1-\sqrt{2}\right)^2}=\left|1-\sqrt{2}\right|=-\left(1-\sqrt{2}\right)=\sqrt{2}-1\)( vì 1 < √2 )
c) \(\sqrt{\left(\sqrt{3}-2\right)^2}=\left|\sqrt{3}-2\right|=-\left(\sqrt{3}-2\right)=2-\sqrt{3}\)( vì √3 < 2 )
\(A=\left|2-\sqrt{7}\right|+7-2\sqrt{7}+1\)
\(=\sqrt{7}-2+8-2\sqrt{7}\) \(=6-\sqrt{7}\)
\(B=3\cdot1,5-4\cdot\left|3-\sqrt{2}\right|\) \(=4,5-4\left(3-\sqrt{2}\right)\)
\(=4,5-12+4\sqrt{2}\) \(=4\sqrt{2}-7,5\)
Ta có: \(A=\sqrt{\left(2-\sqrt{7}\right)^2}+\left(\sqrt{7}-1\right)^2\)
\(=\sqrt{7}-2+8-2\sqrt{7}\)
\(=6-\sqrt{7}\)